
Scheduling at the Edge for Assisting Cloud Real-Time Systems
Lorenzo Corneo

Uppsala University

Sweden

lorenzo.corneo@it.uu.se

Per Gunningberg

Uppsala University

Sweden

per.gunningberg@it.uu.se

ABSTRACT
We study edge server support for multiple periodic real-time appli-

cations located in different clouds. The edge communicates both

with sensor devices over wireless sensor networks and with ap-

plications over Internet type networks. The edge caches sensor

data and can respond to multiple applications with different timing

requirements to the data. The purpose of caching is to reduce the

number of multiple direct accesses to the sensor since sensor com-

munication is very energy expensive. However, the data will then

age in the cache and eventually become stale for some application.

A push update method and the concept of age of information is

used to schedule data updates to the applications. An aging model

for periodic updates is derived. We propose that the scheduling

should take into account periodic sensor updates, the differences in

the periodic application updates, the aging in the cache and com-

munication variance. By numerical analysis we study the number

of deadline misses for two different scheduling policies with respect

to different periods.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; Cloud computing; Sensor networks;

KEYWORDS
Edge computing; cloud computing; sensor network; Industrial IoT;

energy efficiency

ACM Reference Format:
Lorenzo Corneo and Per Gunningberg. 2018. Scheduling at the Edge for

Assisting Cloud Real-Time Systems. In TOPIC ’18: Theory and Practice for
Integrated Cloud, Fog and Edge Computing Paradigms 2018 Workshop, July
27, 2018, Egham, United Kingdom. ACM, New York, NY, USA, 6 pages. https:

//doi.org/10.1145/3229774.3229777

1 INTRODUCTION
Cloud computing is increasingly becoming attractive for real-time

systems. One attractive advantage is that major part of the con-

trol application execution can be off-loaded from the sensing and

actuating devices to the cloud at the cost of communication. This

off-loading is particularly important for battery operated devices.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

TOPIC ’18, July 27, 2018, Egham, United Kingdom
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5776-0/18/07. . . $15.00

https://doi.org/10.1145/3229774.3229777

Cloudk

Cloudl

Appk,j

Appl,j

sensorl

sensork

Internet Sensor

W
ir

el
es

s
S

en
so

r
N

et
w

or
k

twin

twin

sensor
twin

Figure 1: A real-time cloud based systemwith an edge server
supporting an energy constrained sensor. The sensor data is
replicated at the “twin sensors”.

Although there are many scalability advantages with control

logic in the cloud, the approach also has several consequences. First,

since cloud servers are often provided at relatively long distances

from the controlled system, there will be a significant communi-

cation delay between the actual sensing event and the application

execution. In addition, a cloud server is designed to support many

simultaneous users, which may cause application scheduling delays

that may be significant. The data will age during the communica-

tion [6, 7], i.e. the information quality will decline. We here use the

metric age of information to measure the quality, defined as the age

of the data since it was generated. Eventually, the data will be too

old and not valid anymore for a correct real-time response, i.e. the

data has become stale and it will cause a real-time deadline miss.

Edge and fog computing [2] have been proposed to handle the

distance problem of the cloud. The idea is to “delegate” time and

safety critical functionality of the control logic to a server close

enough to the controlled system, typically located at the network

edge.

We consider real-time cloud-edge-sensor architectures composed

of sensor devices located on a local wireless network with an In-

ternet gateway, an edge server co-located with the gateway and a

cloud infrastructure, hosting several applications that need timely

data from the sensors. See figure 1. The edge acts as a smart caching

proxy between the sensor devices and the clouds. If the edge caches

sensor data, it can respond to multiple application requests at dif-

ferent clouds as long as the data is fresh enough for them.

In particular we consider periodic applications and battery op-

erated sensor devices that are duty cycled in order to save energy.

The caching can reduce the number of sensor accesses in order to

save energy but at the cost of some aging in the edge that increases

the probability of stale data. From energy conserving point of view

it is desirable to have as long period as possible between duty cy-

cles while still meeting the real-time requirements from the most

stringent update periods of the applications.

https://doi.org/10.1145/3229774.3229777
https://doi.org/10.1145/3229774.3229777
https://doi.org/10.1145/3229774.3229777

TOPIC ’18, July 27, 2018, Egham, United Kingdom Lorenzo Corneo and Per Gunningberg

The edge completely controls the communication to the sensor

and caches the most recent sensor data value in a “digital twin

sensor” (i.e. virtual sensor) [1], see figure, which is in turn exported

to the corresponding twins at the clouds. The sensor value will age

in the edge until it is renewed by a new sensor reading at a duty

cycle. The cached value is pushed to the twins according to the

periodicity of the applications. A problem with this approach is that

the sensor cycle and the applications have different periodicity. This

causes varying edge aging of data for the applications compared

to when all applications do their own individual reading directly

to the sensor. Aging increases the risk for stale data for correct

real-time execution compared to direct access to the sensor and

must be controlled at the edge. Our contributions are the following:

• Novel insights on how data ages in edge for periodic real-

time cloud applications.

• An edge scheduling strategy that moves aging in the edge

to aging in the cloud in order to decrease deadline misses.

We believe that we are among the first to study how a smart edge

server could support cloud based real-time applications using duty

cycled sensor devices.

In the following section we set a scenario and discuss related

work. In section 3 our cloud-edge-sensor system is described and

modelled with some simplifying assumptions. The model includes

communication latencies and aging processes for multiple applica-

tions with different update frequencies. Section 4 describes when

a scheduler in the edge may push data to the applications with

respect to the aging at the cloud, edge and the periodicity of the

applications. Then in the following section we evaluate two sched-

uling principles; a basic one determined by the periodicity of the

applications and a smarter one that also take into the account the

skew between the application periods. In section 5 we evaluate the

two principles with numerical analysis with respect to how long

time the data in the application is valid given the age of information

and real-time constraints of the applications. Our purpose of the

evaluation is to show the possible gain with a smart scheduling.

The paper is finalized with a conclusion section.

2 SCENARIO AND RELATEDWORK
As an illustrating scenario of a real-time cloud based system, con-

sider autonomous forklift trucks in a factory, moving goods on the

factory floor. To justify the need for delegating time critical func-

tions to the edge, assume humans moving more or less randomly

on the factory floor which requires the trucks to reliably and swiftly

avoid hitting them. The anti-collision function is preferably located

in the truck or a close-by server. On the other hand, a logistic pro-

gram on where to pick up goods and to calculate the best route for

the trucks is preferably done in the cloud since it needs all the truck

positions and data about the location and destination of the goods.

Still, the varying communication delays may cause stale data at the

cloud.

Fog computing [2], or also called edge computing, is a paradigm

that has been proposed to supply to the limitations of cloud com-

puting. For example, fog computing can be used to enable highly

responsive (e.g., low latency) cloud services, mask cloud outrages

[9] and enforce privacy [3]. Edge computing is particularly used to

enable mobility and one of the most successful implementations are

cloudlets [10]. Another strong point of edge computing is that it can

be used for offloading computation from constrained devices [4].

Previous effort in coupling data freshness and caching is presented

in [11] in the context of Information Centric Networking.

The metric age of information is a concept that was firstly intro-

duced by Kaul et al. [6] in the context of vehicular networks. The

age of information is a metric for measuring data freshness and is

formally defined as ∆(t) = t − u(t), where t is the current time and

u(t) is the time stamp of the freshest sensor update received by the

cloud.

3 OUR CLOUD-EDGE-SENSOR SYSTEM
Consider a system consisting of a sensor device, an edge server,

two or more clouds running different applications, as illustrated

in figure 1. An application is periodically scheduled according to

specifications, e.g a frequency of 4Hz (every 250ms). Hence, for

periodic applications it is deterministically given when in real time

the application should execute, given a start time for the first period.

Assume for simplicity, without sacrificing generality, only two

applications Appk and Appl , one in each cloud. The applications

are periodically executed with the frequencies fk , fl respectively,
where fk > fl . Each cloud has a “digital twin sensor”[1], a data

structure that is updated with the most recent value of the real

sensor via the edge. An application will then conceptually read

the twin in the same manner as if it would have been running on

the sensor device or edge. This twin value is time-stamped by the

sensor device when it is read, which means that an application can

decide if it is stale or not according to its own clock and real-time

specifications.
1
Intuitively the update frequency of the digital twin

should be higher than the frequency of the application. But this

is not enough, the age of the value has also to be within real-time

boundaries. The value is aged by both the communication delays

as well as waiting times for transmission resources.

How is the digital twin updated? The most straightforward way

is the push model. The sensor device reads sensor data at wake-up

periods and pushes the data to the edge twin for further pushes

to the applications. Another model is request/response. Here the

application instead requests an update to its twin when needed

from the edge, i.e. a pull model. The edge in turn could also request

an update from the sensor before delivering the response.

Communication. The communication path of data to the cloud

has two distinct parts with different characteristics. The first part

is between the sensor device and edge, typically it is a wireless

sensor network optimized for small distances, energy conserva-

tion and predictable resource sharing. The second part of the path,

between the edge and a cloud, is assumed to be a fully powered,

high bandwidth network with regular Internet characteristics. The

cloud service could be far away causing a substantial communi-

cation latency and when the network is shared there will also be

considerable variance. The second part is normally dominating in

terms of communication latency. The variance in the first part can

in most circumstances be considered insignificant compared to the

second.

1
We assume that all clocks are enough synchronized and that clock drifts between

synchronizations are not significant.

Scheduling at the Edge for Assisting Cloud Real-Time Systems TOPIC ’18, July 27, 2018, Egham, United Kingdom

Table 1: Parameters for data aging and timing bounds.

∆a (t) Age of data at application period.

τ∆ Maximum acceptable age of data.

ui Time-stamp for the i:th sensor data.

ri Start of application for i:th data.

dse Packet delay between sensor and edge.

dec Packet delay between edge and cloud.

dv,i Delay variance for i:th data.

texec Tolerable length of application execution time.

σ Delay before start of execution time.

tc Minimum required execution time.

vi Valid execution time for i:th data.

The communication latency can also be divided into a fixed,

deterministic part and a varying part. The varying part includes

data buffering, network contention and re-transmissions. Within

the fixed we include propagation delays and transmission times

assuming a known packet size. Since the wireless sensor network

latency is both relatively small and typically time bounded we

take the simplifying assumption to consider it as a fixed part. For

this paper, packet losses are assumed to be handled by a reliable

transport service. Packet re-transmissions may cause very long

delays that breaks the age of information bounds. Other packet

loss organization can be considered for real-time system, e.g. for

periodic updates an idempotent approach may be favorable [5].

Edge. The edge server is fully powered and has the necessary

computational capacity for processing and storing sensor data as

well as servicing all requests from the applications. The edge also

implements a digital twin that is updated by the sensor device and

exported to the applications. It will initially request all applications’

real-time requirements, including the update frequencies in order

to optimize digital twin updates and sensor readings. Given these

requirements, the edge can instruct the sensor device to change the

length of the duty cycle in order to meet the aggregated require-

ments.

3.1 System behaviour
We now observe how sensor data ages in our system. Assume only

one application in one cloud for the time being. The application is

specified to run with frequency fa , or with period Ta=1/fa (from

now on, we use period and frequency interchangeably). For a single

application the sensor should produce data with at least the same

frequency fa . In other terms, the sensor will produce data periodi-

cally at time ui , such that ui+1=ui+Ta . That data would then age

on its way to the application. We assume u0 to be the time when

the sensor device starts producing updates.

For further explaining the aging process, consider first the case

with deterministic communication delays, as in figure 2(a). For a

single application there is here no edge caching and the sensor data

is directly propagated from the edge to the application. The delay

part from the sensor to the edge is denoted dse and the second part,
from the edge to the twin in the cloud, is denoted dec in the figure.

At time ri=ui+dse+dec the data appears in the cloud twin with

age ∆a (t) = ri -ui and the application is now enabled to execute.

Intuitively, the application will perceive the age ∆a (t) behaving

like a “saw tooth” function that grows linearly with time and drops

whenever a new update is received with a new time stamp.

dse+dec
t

u0 u2 ui ui+1
r0 r1 r2 ri ri+1texec

Ta

u1
dse

(a) Aging of data with application period Ta

vi

(b) Aging of data with variance delay

vi

(c) Aging of data by edge server and variance delay

Figure 2: Aging process and validity period (below the
graphs).

The execution could start immediately at ri , or in the general case
with a delay σ , i.e. at time ri + σ . The maximum allowed execution

time texec is given by the application requirements. This execution

interval is illustrated in the figure as an unfilled bar. The parameter

tc specifies the actual computational time needed for the execution

and must be less than texec . It allows the application scheduler to

decide where in the texec interval the actual computation will take

place, e.g. according to an Earliest Deadline First scheduling [8].

For periodic applications we therefore identify two timing bounds
that both must be met. The first is that the execution must take place

in the period texec , with start at ri +σ . The second bound is on the

age of data. Within texec the data must also be valid with respect to

TOPIC ’18, July 27, 2018, Egham, United Kingdom Lorenzo Corneo and Per Gunningberg

age. In figure 2(a) we use τ∆ to set the maximum allowed data age.

It must be below τ∆ at least tc during a texec interval to be valid.

Both conditions must be fulfilled otherwise we have a deadline

miss. Taken together they form a validity period, vi , that the ap-
plication only can execute in. For example, a system may specify

that it should periodically produce results every 10 seconds but no

later than 11 seconds but can tolerate up 2 second old data when it

starts the execution.

In Figure 2(a), where we have no variance the design parameters

τ∆, texec , σ and r0=dse+dec can hence be set to completely avoid

deadline misses.

In Figure 2(b), delay variance in the second communication part

is introduced as dv,i . The other parameters are the same as for

Figure 2(a). The data item for ri is now exposed to an additional

delay. As a result, the previous data in the twin will have to stay

longer before being replaced, possibly beyond τ∆. In the figure, at

time ri + σ , the planned starting time of the execution, the existing

value in the twin is too old and the application has to wait for an

update that arrives at ri + dv,i . When dv,i > σ the valid execution

periodvi hence becomes shorter. At some point it is shorter than tc
and then we have a deadline miss. Thus, with an increasing delay

variance the probability of misses will also increase.

Algorithm 1 illustrates the pseudo-code for checking the validity

of data. At the start of each execution period the application must

first check if the age of the data in the twin sensor is within age

boundaries during the time texec . If that is not the case the applica-
tion is put on hold awaiting an update to the twin. When an update

arrives the application once again reads the age of information and

checks against the remaining execution time.

Algorithm 1 Pseudo-code of the application.

1: function Application(τ∆, texec , tc)
2: if ∆a (t) + tc < τ∆ then
3: do_job()

4: else
5: δ = expected_time_next_update()

6: if δ + tc < texec ∧ ∆a (t + δ) + tc < τ∆ then
7: do_job()

8: else
9: misses++

10: Application(τ∆, texec , tc)

3.2 Multiple applications
We now consider the scenario in Figure 2(c) with two applications

with periods Tk and Tl , where Tk < Tl . In this scenario the edge is

active in caching sensor data. In order to meet the tightest update

period the sensor duty cycle is consequentially set toTk . This means

that the twin at the edge will see an “aging saw tooth” with period

Tk (see lower saw tooth in the figure). When the twin is updated

with a new value the edge will immediately forward it to Appk ,
which will see its own “saw tooth”, like the one for the single case.

The second application Appl has a longer period. In figure 2(c)

we otherwise use the same parameters for Appl as for figure 2(b),
including the delay variance to illustrate the impact of caching.

In 2(c) the edge forwards data at every ri − dec . The red dots are

put at these times and they also indicates how much the data has

aged before it is forwarded. The dashed lines from the dots are

Figure 3: AITE - the edge pushes sensor updates to the digi-
tal twin according to the application period without consid-
ering aging at the edge and communication variance.

Figure 4: AITC - the edge pushes sensor updates to the appli-
cation as soon as they get available.

communication times for the data to reach the cloud twin. It can

be observed that the dots form a regular pattern, with equivalent

distance on the edge aging teeth. This is a consequence of that Tl
is not a perfect multiple of Tk . When Tl=nTk . i.e. a multiple, all the

red dots will have same age of information. The age of the data at

the dots can be calculated as:

∆l (ri − dec) = dse + [(i ·Tl) mod Tk] (1)

The valid execution periods,vi , are drawn at the bottom of figure

2(c). For event r1,v1 is shortened due an aging at the edge. For event
ri ,vi is shortened by an extended communication delay (i.e. caused

by delay variance). The valid execution may be shortened in both

ends and cause deadline misses.

4 SCHEDULING POLICIES
We now describe two scheduling policies in which the edge will

provide mechanisms for sending sensor updates to the digital twins

in the cloud according to applications execution periods.

The first scheduling policy is called “Age in the Edge” (AITE)

and is designed to deliver sensor updates to an application within

the execution time texec . Figure 3 shows how the age of sensor

updates is evolving for this policy. In the lower part of the graph,

we recognize the saw teeth at the edge and the validity periods.

The main drawback with AITE is the aging at the edge. The data

is already aged when pushed to the cloud and it may then also

Scheduling at the Edge for Assisting Cloud Real-Time Systems TOPIC ’18, July 27, 2018, Egham, United Kingdom

be exposed to network congestion prolonging the aging further.

An intuitive solution to improve the situation would be to more

frequently push updates towards the digital twin. For example, all

sensor updates could be forwarded to the twin. This solution will

however increase the number of updates in the network which is

not desirable.

The second scheduling policy is named “Age in the Cloud” (AITC)

and is illustrated in figure 4. It is designed to send the updates at the

beginning of a saw tooth rather than let them age at the edge before

pushing them as in AITE. Since it is predictable which updates will

be aged at the edge it is possible to reschedule the updates so that

there will always be a fresh value. Such a predicted aged update

could be sent as soon as it arrives, which is the case for u4 or the
update could be delayed to the next fresh value as for u3. When

it is sent earlier the update will age in the cloud instead but has

the advantage that it may tolerate communication variance better.

When it is sent later, the data is fresher and it may tolerate better

the age boundary even if it arrives later in the texec period.
In AITC the validity period will increase compared to the AITE

scenario. We show differences between AITE and AITC in figures

3 and 4 respectively.

5 EVALUATION
In this section we evaluate the aforementioned AITE and AITC

scheduling policies from the point of view of three different metrics.

First of all, we observe the experienced age at the cloud ∆c (t) upon
reception and at application execution ∆a (t). Then, we analyze the
amount of time an update is usable before breaking the deadlines

τ∆, τ∆ − ∆c (t)
+2
. Finally, we discuss the validity execution inter-

val of an update, vi . These metrics are important as they reflect

application’s execution flexibility and probability of experiencing

real-time misses.

In our evaluation setup, the sensor device produces a new value

once every 100ms. We assume a fixed communication delay be-

tween the sensor device and the edge of dse = 1ms. The cloud

infrastructure is placed at a transmission and propagation distance

of dec = 100ms from the edge. The communication is affected by

an additional delay with variance (dv,i), according to a Pareto dis-

tribution with an expectation value of 14ms. We arbitrarily selected

Pareto since it is commonly used for Internet delay distributions,

but the same general behavior and main conclusions would apply

to other distributions. The application in the cloud is executed once

everyTa = 190ms with an execution time of texec = 152ms starting

from the beginning of the application period (i.e. σ = 0) and tc = 0.

The upper bound on age of information for this application is set

to τ∆ = 210ms.

We perform numerical evaluations based on the aging model,

the above parameters and the two scheduling principles described

in previous section, illustrated in figures 3 and 4. We collect the

results from 5000 application readings of the twin sensor in the

cloud. These 5000 readings are affected by 5000 delay samples from

the Pareto distribution. The maximum value of these samples is

161ms.

Figure 5: CDF of age of information for AITE and AITC
upon updates reception at the cloud, ∆c (t), and at applica-
tion, ∆a (t). On the right the variance distribution is shown.

5.1 Numerical results
Figure 5 shows the cumulative distribution function of the age of

information of the updates when they are received at the digital

twin in the cloud, ∆c (t), and when the application is executed,

∆a (t). First of all, we discuss ∆c (t). The distribution of the age of

information for AITE is basically linear due to the misalignment

between the sensor and application periods. This misalignment,

in the long run, forces the age of information at the application

to be uniformly distributed throughout the aging saw tooth. Fur-

thermore, communication variance (showed in the small box at the

right) is additive and extends age of information’s upper-bound.

The distribution of AITC, on the other hand, follows closely the

variance distribution since all the updates are sent immediately

upon reception at the edge. For this reason, the age of information

∆c (t) follows the variance dv,i +dse +dec . These two CDFs confirm
what can be expected about the relative parameters of edge aging

and expected variance.

From the point of view of the application, ∆a (t), AITE shows

the worst performance. In fact, the misalignment of different peri-

ods impacts even more the already degraded distribution of ∆c (t)
for AITE. On the other hand and despite the same misalignment

problem, AITC performs better than AITE. Intuitively, the better

freshness exhibited by “∆c (t)-AITC” approximately translates the

same “∆a (t)-AITC” closer to the origin on the X-axis. The previous

insights are crucial to properly dimension real-time requirements,

including τ∆.
Figure 6 presents the cumulative distribution function of the

amount of time an update is usable before breaking the timing

requirement τ∆, “τ∆ − ∆c (t)
+
”. In other words, we can see for how

long one update will be valid before it gets too old for correct

processing. To better understand this plot, we provide the insight

that the more the curve is distributed on the right, the better. In fact,

the higher the numbers on the X-axis, the longer the validity time

on age of information. We observe that, for AITE, roughly 4% of the

updates is already too old for usage at the arrival at the cloud (value

0 in the plot). Maybe without surprise, AITC obtains better results.

The validity in AITC is better because the updates are forwarded

upon reception. Nonetheless, having a larger margin to τ∆ is not

2
Only positive values allowed, whenever negative the returned value is zero.

TOPIC ’18, July 27, 2018, Egham, United Kingdom Lorenzo Corneo and Per Gunningberg

0 20 40 60 80 100
τ∆−∆c(t)+ [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

AITE
AITC

Figure 6: CDF of the amount of time an update is usable be-
fore breaking timing requirement τ∆.

0 20 40 60 80 100
v [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

AITE
AITC

Figure 7: Validity v of the updates at the application.

enough since the update must also be valid during the application’s

execution time texec . This leads us to our last proposed evaluation

metric.

Figure 7 shows the cumulative distribution function of v , the
validity interval of an update within the application’s execution

time texec . As for the previous plot, the more the CDF is distributed

on the right, the better. Also in this case, AITE performs worse

than AITC. For instance, 34% of the updates are not valid with

respect to texec (CDF value 0). This confirms the hypothesis made

in section 3.1 where we stated that both aging at the edge before

transmission and communication variance reduce the validity v
for such application. In contrast, AITC outperforms AITE as it is

designed to deliver the freshest updates as close as possible to the

application execution. From the figure we observe that we obtain

only 9% of misses and we also have significant improvement in the

validity of the received updates at the application.

5.2 Discussion
We evaluated two different scheduling policies, namely, AITE and

AITC. We demonstrated that aging in the cloud is better than ag-

ing in the edge, especially when updates must travel through the

Internet and are exposed to non-negligible communication vari-

ance. Furthermore, scheduling with knowledge about misalignment

between periods helps real-time applications in meeting their tim-

ing requirements without the need to emit updates with higher

frequencies, which would increase the network traffic and reduce

sensors battery life.

One may argue that the communication model used is too sim-

plistic, but this is done on purpose. In fact, the system already relies

on numerous parameters spread over several distributed compo-

nents. Adding further complexity will mask the base overall func-

tioning of the system impacting the understanding of the proposed

challenges and solutions.

6 CONCLUSION
We study the behaviour of a distributed real-time systems composed

of sensor devices, wireless sensor networks, edge server(s) and a

remote cloud infrastructure. We make use of the age of information

as a main metric for evaluating the freshness of sensor updates at

cloud based periodic applications with timing requirements. For

periodic applications we identify two validity timing bounds on

sensor data that both must be met. The first is that the data must

not be too old for the application. The second is that even if the

data is fresh enough it must also be available within the specified

execution time interval of the application to be valid. We showed

that an edge scheduler can play a fundamental role for delivering

fresh data within a specified execution interval of a periodic appli-

cation. We evaluated numerically two scheduling policies providing

insight on how to improve the validity time interval of updates

and we discussed trade offs among the several parameters of the

system. The purpose of the evaluation is to show the potential gain

of scheduling updates to applications with mismatched periodicity

and duty cycled sensors. Even if the evaluation is not comprehen-

sive we draw the conclusion that there are considerable possible

improvements a designer of an edge-cloud based real-time system

should be aware of. A more comprehensive study scaling for several

applications, cloud services, more realistic communication delays

and different scheduling parameters remains for future work.

7 ACKNOWLEDGEMENT
This work was supported by the Swedish Foundation for Strategic

Research under the project “Future Factories in the Cloud (FiC)”

with grant number GMT14-0032.

REFERENCES
[1] K. M. Alam et al. 2017. C2PS: A Digital Twin Architecture Reference Model for

the Cloud-Based Cyber-Physical Systems. IEEE Access (2017).
[2] Flavio Bonomi et al. 2012. Fog Computing and Its Role in the Internet of Things

(ACM MCC ’12).
[3] Nigel Davies et al. 2016. Privacy Mediators: Helping IoT Cross the Chasm (ACM

HotMobile ’16).
[4] Kiryong Ha et al. 2014. Towards Wearable Cognitive Assistance (ACM MobiSys

’14).
[5] Pat Helland. 2012. Idempotence is Not a Medical Condition. Commun. ACM

(2012).

[6] S. Kaul et al. 2011. Minimizing age of information in vehicular networks (IEEE
SECON 2011).

[7] S. Kaul et al. 2012. Real-time status: How often should one update?. In 2012
Proceedings IEEE INFOCOM.

[8] C. L. Liu et al. 1973. Scheduling Algorithms for Multiprogramming in a Hard-

Real-Time Environment. J. ACM (1973).

[9] M. Satyanarayanan. 2017. The Emergence of Edge Computing. Computer (2017).
[10] M. Satyanarayanan et al. 2009. The Case for VM-Based Cloudlets in Mobile

Computing. IEEE Pervasive Computing (Oct 2009).

[11] S. Vural et al. 2017. Caching Transient Data in Internet Content Routers.

IEEE/ACM Transactions on Networking (April 2017).

	Abstract
	1 Introduction
	2 Scenario and Related Work
	3 Our Cloud-Edge-Sensor System
	3.1 System behaviour
	3.2 Multiple applications

	4 Scheduling policies
	5 Evaluation
	5.1 Numerical results
	5.2 Discussion

	6 Conclusion
	7 Acknowledgement
	References

