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Abstract—We consider large scale Internet of Things applica-
tions requesting data from physical devices. We study the prob-
lem of timely dissemination of sensor data towards applications
with freshness requirements by means of a cache. We aim to
minimize direct access to the possibly battery powered physical
devices, yet improving Age of Information as a data freshness
metric.

We propose an Age of Information-aware scheduling policy for
the physical device to push sensor updates to the caches located
in cloud data centers. Such policy groups application requests
based on freshness thresholds, thereby reduces the number of
requests and threshold misses, and accounts for delay variation.
The policy is incrementally introduced as we study its behavior
over ideal and more realistic communication links with delay
variation. We numerically evaluate the proposed policy against
a simple yet widely used periodic schedule. We show that our
informed schedule outperforms the periodic schedule even under
high delay variations.

I. INTRODUCTION

Internet of Things (IoT) enabled applications in the domains
of health care, environmental and building monitoring must
rely on timely and fresh information gathered from a wide
plethora of sensing devices. Age of Information (AoI) [1], [2],
the age of the data since it was generated, is a metric indicator
of data freshness. AoI is formally defined as ∆(t) = t−U(t),
where t is the current time and U(t) the time stamp of the
most recent information update.

Since its introduction in [2], the AoI concept has been
studied with different approaches and in different contexts. AoI
minimization problems have been broadly studied in the field
of queuing theory in [2]–[8] and in the context of energy har-
vesting systems, where energy is intermittent due to uncertain
environmental conditions [9]–[14]. In wireless communica-
tion links, AoI-aware scheduling policies have been proposed
in [15]–[19]. Furthermore, AoI has been used for applications
in the domain of cloud gaming [20] and the dissemination of
content updates in mobile social networks [21].

Cloud computing [22] goes hand in hand with IoT. Cloud
servers provide seemingly unlimited storage and computa-
tional power, is geographically distributed and accessible all
around the globe. Cloud computing is particularly attractive
for off-loading storage and computation from battery and
battery-free operated sensing devices. Although there are many
scalability advantages, there is a significant communication
latency between the actual sensing event and the IoT applica-
tions in the cloud. To overcome this latency limitation, edge
and fog computing [23] have been proposed to move cloud

functionality closer to the physical devices, typically at the
edge of the network [24]. Time and safety critical functionality
can then be performed with lower latency.

Nonetheless, the intrinsic nature of IoT applications faces
scalability challenges itself. In fact, the sensing device is a
bottleneck as it is the main entity that generates information
for the IoT applications. In addition, sensing devices may
be energy constrained and should not have to reply to each
and every application request. Cloud and edge infrastructures
linking applications with the sensing devices are therefore
exposed to a trade-off to either provide fresh information
from the devices, by extensively accessing them, or provide
applications with cached information that are aged.

In this paper, we present an AoI-aware scheduling pol-
icy aimed to solve the problem of 1-to-many information
dissemination from sensors to several remote applications.
In particular, we focus on reducing sensor energy consump-
tion yet satisfying applications timing requirements in the
presence of varying communication delays. We consider a
system architecture composed by cloud servers, edge servers
and physical systems of sensing devices. We use the storage
and computational power provided by the cloud as a mean
for content distribution of sensor updates towards several
remote applications. Then, the edge aggregates applications
subscriptions to sensor updates coming from geo-distributed
cloud instances. As a result, the edge server generates “smart”
schedules to be downloaded to the sensor devices for duty-
cycling purposes. Our contributions for this work are:
• A novel AoI-aware scheduling policy for sensor networks

which reduces energy consumption while still ensuring
fresh enough information towards several remote appli-
cations.

• A method that allows remote applications to meet their
freshness requirements despite the effect of delay varia-
tions, especially between edge server and cloud.

The remainder of this paper is organized as follows. Sec. II
and III describe the system and performance metrics. Sec. IV
and V incrementally introduce scheduling policies in ideal and
delay constrained conditions, respectively. The performance of
the AoI-aware schedule is evaluated and discussed in Sec. VI.

II. SYSTEM

We consider the system illustrated in Fig. 1 that involves
sensing devices, an edge server and one or more cloud data
centers hosting different applications.
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Fig. 1. System architecture.

¬ Generic applications with requirements on data freshness
subscribe to the closest (in terms of latency) cloud instance.
They specify the interest in particular sensors, an execution
schedule and an upper-bound on freshness of the information.
We consider applications that run periodically but can tolerate
some variance in the scheduled execution times. Examples of
such applications are monitoring and control systems.

 The cloud instances export sensor readings through an
artifact commonly called “digital twin” sensor [25]. The
digital twin allows the applications to access cached copies of
sensor readings as if they were accessed directly at physical
sensing devices, with some aging. The use of such artifact is
motivated by latency. In fact, as the communication latency
between the applications and the physical sensors may be
significant, a pull update strategy may not be the best option
for applications with strict timing requirements. As a result,
we propose to update digital twins with a push policy from
the physical sensing devices and edge device. Digital twins
can be replicated at multiple cloud instances in order to min-
imize delay for data dissemination towards the applications.
Furthermore, the subscriptions and the requirements on digital
twin sensors are forwarded to an edge device on behalf of the
applications.

® The edge device is located close to the sensor network.
As first responsibility, it receives from cloud instances all the
subscriptions and requirements of the applications. Then, it
aggregates all the requirements and combines them together
creating a “smart” schedule. The aim of this schedule is
to instruct the sensors on when to push updates toward the
edge server. Such schedule is able to minimize the number
of sensor update transmissions yet providing the required
level of information freshness. Furthermore, it accounts for
communication delay towards the cloud infrastructures. ¯
After being computed, the schedule is pushed towards the
physical sensor.

The physical sensing devices consist of a sensor network
that provides sensor readings. The sensors in the network
are duty-cycled in order to save energy and prolong battery
lifetime. ° The duty-cycling is dictated by the schedule
received by the paired edge device. ± Once the edge server
receives the aforementioned sensor updates, it will push them
towards the respective digital twins in the cloud. Without loss
of generality, we consider sensor updates from one particular
sensor to a possibly large number of applications.

III. MODEL

A. Notation and Parameters

Let A = (a1, a2, ..., aN ) be the set of the N applications
with timing requirements in the system. These applications
are periodically executed and we indicate these periods with
the set T = (T1, T2, ..., TN ), where the subscript refers to
applications in set A.

The applications in set A request sensors information at
a cloud that provides digital twin services. The set of M ∈
N+ cloud instances is defined as C = (c1, c1, ..., cM ). We
indicate the latency (one way delay) between application a
and sensing devices as da,s. To be noticed, every application
specifies upper-bounds on AoI, τ , and may accept a delayed
response by ε time units and wait for a fresher update. We
make a simplifying assumption that all the applications have
the same freshness threshold τ .

Let xa = {t0 + i · Ta : i ∈ N+} be the set of periodic
execution times of application a ∈ A with period Ta ∈ T
and start time t0. As the application subscribes its interest in
sensors information to a cloud c ∈ C, the latter knows the
execution schedule of such application (xa). Additionally, we
define the set of applications subscribed to a particular cloud
c ∈ C as Ac, where Ac ⊆ A.

Finally, we define the execution schedule of all the appli-
cations subscribed at a cloud c ∈ C as Xc =

⋃
∀a∈Ac

xa.
To notice, all the elements in Xc are sorted such that xi <
xi+1,∀x ∈ Xc ∧ i ∈ N+. For simplicity of notation and
readability, we assume that all the applications subscribe to
the same cloud and we therefore avoid suffix c throughout the
paper (i.e. Ac → A,Xc → X).

B. Evaluation Metrics

We take into account the following four evaluation metrics:
• The ratio between the number of transmitted sensor

updates and the total number of application requests in
the system, ρ, is defined as:

ρ =
# sensor updates

# applications requests
(1)

• The average Age of Information of all the applications in
the system, ∆A, is formally defined as:

∆A =
1

|X|

|X|∑
i=0

∆(xi) (2)

where xi is the i:th scheduled application execution and
∆(·) is the instantaneous age of information defined as
∆(t) = t − U(t), where t is the current time and U(t)
the update’s generation time [2].

• The average response time of all the running applications,
ReT, is defined as

ReT =
1

|X|

|X|∑
i=0

x̂i − xi (3)



where x̂i is the actual execution time of xi and we also
assume that x̂i > xi. The main idea behind this metric is
that the applications may have delay budgets and are able
to tolerate longer time for the response to a request with
the aim to obtain better AoI. The behavior of response
time is further explained in the next section.

• The number of deadline misses is delivered by a threshold
function that measures the number of stale updates that
have been read by the applications. We formally define
this metric as the cardinality of the elements older than
τ , for all the applications requests:

misses =
|{x : x ∈ X ∧∆(x) > τ}|

|X|
(4)

It is straightforward to extend the formula to a multi-
threshold case by adding individual application identifier suf-
fixes to thresholds (e.g., τa with a ∈ A). The resulting number
of misses would be the summation of individual applications
misses.

IV. SCHEDULING POLICIES

In this section we incrementally introduce scheduling poli-
cies to improve AoI. Schedules are created at the edge
server after receiving timing requirements of the applications,
forwarded by the cloud. Eventually, individual schedules are
downloaded into sensing devices. To start with, we assume
ideal communication links without propagation delay and
packet loss. Therefore, the delay between applications and
sensors da,s = 0 ms (including between edge and cloud) and,
hence, AoI can reach 0 ms as well.

A. Age of Information Optimal, π∗∆
π∗∆ is a scheduling policy that delivers optimal AoI. It

achieves this by matching every application execution in
X with a sensor update. The Age of Information Optimal
scheduling policy is formally defined as:

π∗∆(X) =
⋃
x∈X
{x− da,s} (5)

To put it in simple words, we can interpret equation 5 as
a scheduling policy that instructs sensors to send one update
for every application execution. The update should be sent in
advance of a quantity equal to the delay between the sensing
device and the application. Assuming a link with no delays, it
is possible to skip the addend da,s. As a result, this will always
deliver ∆A = 0 ms. As a consequence, the ratio between
applications requests and sensor reading transmissions is ρ = 1
and ReT = 0 ms.

B. Periodic Updates, πP
While the Optimal AoI policy requires a sensor update for

each request, it is possible to schedule fewer updates if one
update can satisfy multiple requests, given that they are all
within the acceptable AoI. That is, we trade an increased
average AoI against fewer updates.

X
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Fig. 2. Schedule πG: Reducing sensor updates by exploiting intersections
between τ segments. The scheduled sensor updates are appropriately sched-
uled at the end of the intersections (illustrated as gray areas). In light gray,
an example of Schedule πD for x4,5 with a delayed update u′2 to reduce the
age of information for x5.

Periodic delivery of sensor updates is one of the most
common approaches in practice. We formally define a periodic
scheduling policy as:

πP (Ts) = {t0 + i · Ts : i ∈ N+} (6)

where Ts is the updating period of sensor S and t0 is the time
of the first update.

What period should be chosen? The objective is to decrease
ρ while keeping ∆(·) bounded in the interval [0, τ ]. Hence,
there is an upper-bound on the period when a request will
provide the applications with stale data, i.e., older than τ .

The scheduling policies presented so far, namely, π∗∆ and
πP , will be used as base lines for comparison between two
other forthcoming policies that trade more effectively ρ against
AoI.

C. Grouping Window, πG

In the periodic policy, we adjust the update period to ac-
commodate as many applications as possible for each update.
In the Grouping Window policy, we will instead maximize the
number of applications accessing the same update by breaking
the periodicity between the updates.

How do we assign the times for the updates within a group
of requests? Fig. 2 illustrates how they are grouped by using
τ . We assume that all the applications in A share the same
maximum acceptable τ .

In the figure, all the scheduled application executions in X
are represented as (red) dots on the time line at the bottom. At
the top time line, the corresponding sensor updates are marked
(in black). Every execution can tolerate an AoI between 0 and
τ . All the (red) dots within the shaded grey areas (grouping
windows) can share the same sensor update. A schedule πG
is then composed by {u1, u2} and so on. Intuitively, the
algorithm finds a window that includeds as many requests as
possible. These applications can be accommodated by a single
update and the delivery of stale data is then avoided. In the
figure, the updates are reduced from five to two. This algorithm
is expected to do a better balancing between ρ and AoI than
πP .



Algorithm 1: Grouping Window with Delay Budget
Data: X , the schedule of applications executions
τ , applications timing requirement
ε, applications delay budget

1 S ←− ∅;
2 i←− 0;
3 while i < |X| do
4 j ←− 1;
5 while Xi+j ≤ Xi + τ ∧ i+ j < |X| do
6 j ←− j + 1;

7 if ε > 0 ∧ ∃Xa ∈ [Xi, Xi + ε] then
8 S ←− S ∪ {Xi+|Xa|};
9 else

10 S ←− S ∪ {Xi};
11 i←− i+ j;

12 return S

D. Grouping Window with Delay Budget, πD

In this scheduling policy we will extend the Grouping
Window policy, πG, by using the observation that many
periodic application executions can tolerate a little delay, when
getting the data from the digital twin. We denominate this
policy Grouping Window with Delay Budget, πD. The small
delay acts as a delay budget for getting the data. The digital
twin can deliberately postpone the response to the application
up to the delay budget, we here call it ε. Why should we use
such delay budget? One answer is that it allows a scheduler
to detect that a digital twin can deliver a new update arriving
within the ε interval. Thus, the application will experience
better AoI than in the case of delivering the previous update.
As a result, we can trade some longer response time, for each
application and up to ε, against lower average AoI.

The operational difference between πG and πD is shown
in Fig. 2. The application running at time x4 can tolerate up
to ε delay and we exploit this for delivering better AoI at
time x5. Algorithm 1 shows a pseudo code implementation
of the Grouping Window with Delay Budget. At line 5-6, we
define the grouping window including in it all the applications
executions in the interval [Xi;Xi + τ ]. Then, at line 7, we
check whether there are other applications scheduled starting
from the first application up to ε. If that is the case, line 8,
we delay the sensor update up to the latest execution in the
aforementioned interval (Xi+|Xa| in the code). If there are no
additional application executions in [Xi, Xi + ε], the sensor
update is scheduled at Xi. In the remainder of the algorithm,
we create the schedule and we manipulate the indexes of set
X so to process it from beginning to end.

E. Relation between schedules

The presented schedules are related to each others. πG with
τ = 0 corresponds to π∗∆ since no request can be grouped.
Likewise, πD with ε = 0 corresponds to πG and, for this

X

πG

τ ε

xi

∆(xi)

∆(xi)

ω

dMujuj−1

delay (ok)

delay (miss)

Fig. 3. The choice of the grouping window in πG depends on the delay
variation. We chose the grouping to minimize misses (i.e., ∆A > τ ), that is,
the margins from maximum acceptable age of information plus delayed reply
has to be larger than the grouping window plus a safety margin to account
for the delay distribution: τ + ε > ω + dM .

reason, Algorithm 1 is valid also for πG. For instance, πG can
be obtained by removing line 7-9 from Algorithm 1.

V. COMMUNICATION DELAYS

We assumed so far ideal communication channels without
propagation delay and errors. In this section we discuss the
impact of propagation delays on the performance of the sched-
ules and introduce a delay-aware adaptation of the previously
introduced policies. Delays can partly be compensated by
adapting the schedule if their variation is small and can be
tracked by an appropriate algorithm. In this paper, however,
we focus on the worst case scenario when the delay variation is
highly random. As a result, such variations cannot be tracked,
yet we can compensate for the minimum delay.

We distinguish between two communication segments: be-
tween edge and cloud, and cloud and applications as they
affect AoI in a different context. The delay between edge and
cloud affects a set of grouped application requests. On the
other hand, the delay between cloud and applications affects
individual application requests. Studying these delays sepa-
rately is motivated by the fact that we assume compensation
for constant delay components; a dominating delay variation
among cloud and applications can be considered a general case
covering delay variation on both segments, and a dominating
delay variation between edge and cloud includes the scenario
where applications are hosted in the same cloud as the digital
twin.

A. Digital Twin Strategies

The digital twins in the cloud are aware of the schedules
produced by the edge and can measure delays in order to
obtain delay averages and variance. On the basis of this
knowledge, they can estimate when sensor updates are likely
to come. In the best case, a twin could calculate a percentile,
say 95:th, of the delay distribution and use that together with
ε and τ to see if it is worth waiting for an update.

Given this knowledge, the twin can decide to either imme-
diately deliver the last update to the application or decide to
wait, if it is likely that a better update will come within the
ε time. The choice depends on which of the previous and the
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forthcoming updates that are expected will have the lowest
AoI.

Furthermore, for unpredictable communication delays there
is always a risk for stale data and out-of-order updates. We
assume digital twins to be preemptive, meaning that outdated
updates are automatically discarded.

For benchmarking our proposed policies we also con-
structed an “Oracle digital twin” who knows the exact com-
munication delay for each individual update, now as well as
in the future. This means that the Oracle can predict when all
updates will arrive to the twin and always decide whether it
is better to wait for an update or to deliver the previous one
in order to minimize the AoI.

B. Delay between Edge and Cloud

When communication delays affect the network path be-
tween an edge and a cloud, all the applications subscribed to
a particular digital twin will be out of synchronization with
respect to the updates. For example, assuming a temporary
delay at the path, the sensor updates will be received by
all the applications later than expected and they may all
experience stale information. Nonetheless, in case of frequent
sensor updates, this misalignment may be insignificant since
the application will get fresh enough data anyway in the
near future. We propose a simple yet effective way to handle
communication delays between edge and cloud in Sec. V-D.

C. Delay between Cloud and Applications

The delay between the twin in the cloud and the application
will not be discussed further besides the observation that it
only affects individual applications. The digital twin is aware
of these delays (e.g., via round-trip time estimation using
stamps). When the delays become significant the digital twin
can notify this to the edge device that will then re-arrange
the schedule. The method proposed in the next section can be
applied in that case.

D. Miss Avoidance Grouping Window, πω
The Grouping Window policy suffers from communication

induced delays in two ways. First, an update which is delayed
for more than ε will lead to a deadline miss for that application.
A deadline miss will also happens when an update arrives
after the end of the grouping window. With this policy, even a

small delay variations may significantly impact the number
of misses. We now propose a method for mitigating this
undesired sensitivity and suggest boundaries on the maximum
number of deadline misses. The main idea is to reduce
the length of the grouping window with a “safety margin”
that accounts for the variations in the delays. Intuitively, the
probability of misses will decrease with a smaller window.

Knowing the extent of delay variations and/or distributions
would assist system’s designers to target (and obtain) a limited
amount of deadline misses while trading off with higher ρ.
For example, assume that we aim at 5% misses over the total
number of application requests. In order to achieve this, we
must calculate the 95:th percentile of the delay distribution.
The aforementioned safety time is then set at the 95:th
percentile. For convenience in this paper we will call the safety
margin dM .

We now re-define the size of the grouping window with the
safety margin dM for varying delays as follow:

ω = τ + ε− dM (7)

A graphical representation of the scheduling policies is
shown in Fig. 3. It should be observed that the physical device
should now send the update in advance of a quantity equal to
dM−ε. Assuming that a schedule S′ is the output of Algorithm
1 (with τ = ω and ε = 01), a new schedule, S, with safety
margin dM can then be formalized in the following way:

S = {s+ ε− dM : s ∈ S′} (8)

Intuitively, while decreasing the number of misses, the new
schedule will provide higher average AoI.

VI. EVALUATION AND DISCUSSION

In this section we evaluate numerically the metrics intro-
duced in Sec. III-B comparing scheduling policies presented in
Sec. IV and V. For every simulation instance we provide 5 min
of simulated time that provides enough statistical relevance
as we operate at milliseconds granularity. If not explicitly
mentioned, we assume N = 10 application with periodicity
randomly selected in the interval [100, 200) ms. When we
account for delays, we assume samples from a Pareto distri-
bution [26] with shape a = 1.672 and scale m = 5.

Whenever the periodic policy, πP , is compared to one of
our proposed schedule, we choose the updating period, Ts, to
correspond to the mean inter-arrival time between the updates
of such schedule. As a result, the periodic schedule and the
proposed one will have approximately the same ρ.

A. Age of Information vs. Ratio Updates-Requests

Figure 4 shows the hyper-plane average age of information
vs. ratio updates-requests in the ideal communication channel
case. We compare Age-Optimal π∗∆, Periodic πP , Grouping
Window πG and Grouping Window with Delay Budget πD

1ω as from Equation 7 with ε ≥ 0, while ε = 0 only for pseudo-code in
Algorithm 1, not for Equation 7 and 8.
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Fig. 5. System metrics evolution varying τ and ε on perfect links and links with random delay for the Grouping Window with Delay Budget schedule πD .
The data points (ε = 0) correspond to πG, the data point (τ = 0, ε = 0) to π∗∆.
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Fig. 6. Percentage of misses evolution varying τ and ε for different scheduling policies.

scheduling policies. The star on the bottom-right corner rep-
resents the Age-Optimal schedule which provides best possible
AoI and maximum ρ, as this strategy schedules an update for
every application request. The up most dotted line shows the
evolution of the periodic schedule. We clearly see that the
smaller the period, the lower the AoI at the cost of higher ρ.
Roughly, ∆A ≈ Ts/2. Both πG and πD deliver better AoI for
the same updates/request ratio as they are designed to meet
applications requirements. The applications will be scheduled
in between a time window that, in the best case, provides AoI
0 ms and, in the worst, 40 ms. ∆A depends on the distribution
and the number of applications in the window. In the illustrated
example, πP (51), πG(40) and πD(40, 10) for ρ = 0.26, πG
and πD improve ∆A by 40% and 66% respectively. The reason
for πD to be better than πG, in terms of AoI, is that the
applications are willing to pay some response time ReT for
fresher data.

B. Age of Information and Response Time

Figure 5 shows the evolution of the system metrics with
several τ and ε configurations for the πD schedule, both on a
perfect link and a link affected by delays. Fig. 5a shows the
average AoI, ∆A. Reading the heat map from top to bottom,
we evince that the bigger τ the higher ∆A, intuitively because
of the larger grouping window contributing to higher ∆(·). For
fixed τ values, the bigger ε the higher the response time ReT,
see Fig. 5b. As a result, ∆A decreases because the applications
are willing to wait some time to get fresher information. To
be noticed, ReT is significantly smaller than the tolerance ε.
Reading the matrix from top to bottom, we notice an increment
then decrement in ReT. In fact, when τ < ε, the applications
are willing to wait time to fetch fresher data, that will come
because of the smaller grouping window. As a result, the
average response time increases. On the other hand, when
τ > ε, updates come more seldom and the applications will
not wait: this result in smaller average ReT.

Figure 5c and 5d present the same metrics on a link affected



by delays. The same behavior described for the ideal link
applies in this case as well, with the difference that we must
account for an additive factor coming from the delays. These
contribute to increase ∆A, especially for big τ and small
ε. In fact, they affect particularly the applications that are
scheduled between the beginning of the grouping window and
the extent of the delay itself. To make things even worse,
if these applications have no delay budget, they will not be
able to compensate for delays, delivering poor AoI and higher
chances of misses. The response time is not significantly
affected by random delays as we assume an oracle digital twin,
see Sec. V-A.

C. Misses

We now consider how πP , πD and πω are affected in terms
of deadline misses. For this particular experiment, we aim at
5% misses and, because of the used Pareto distribution, we
obtain dM = d95 = 30 ms. Fig. 6 provides an overview
of the evolution of misses, while varying τ and ε for the
aforementioned policies. As a remainder, a miss happens when
the sensor update is consumed by the application when it is
older than τ . We consider first πP , whose period is calculated
as the mean value of the inter-arrival time of the relative
Grouping Window schedule used for comparison. To put it
in other words, the two schedules will have the same ρ. Fig.
6a shows the performance of the periodic schedule on a perfect
link. We clearly see that, without delay budget, the percentage
of misses is rather high. On the other hand, if the applications
have delay budget, the periodic schedule is able to compensate.
When introducing random delays, see Fig. 6b, the periodic
scheduling delivers many more misses than in the previous
case. Again, if the applications do not account for some delay
budget, the performance is very poor.

Fig. 6c shows how the Grouping Window with Delay
Budget is affected by delays. The results are in line with
the periodic schedule as, for some configuration of (τ, ε), it
is slightly better and, for others, slightly worse. Nonetheless,
both Fig. 6c and 6b exhibit degraded performance. For this
reason, we introduced Miss Avoidance Grouping Window πω ,
and the obtained percentage of misses is shown in Fig. 6d. For
τ ≥ 20 ms2 we notice a significant performance improvement
both over πP and πD. Surprisingly, and contrarily to all
the previous cases, some increasing ε deliver slightly higher
number of misses. The explanation behind this is rooted in
Equation 7. In fact, the bigger ε the bigger the grouping
window, meaning more applications executions in it. When
a random delay is greater than d95, all the applications in the
window will experience a deadline miss. That is, increasing ε
in πω may lead to deliver higher number of misses, yet reduc-
ing ρ. Nonetheless, such increment of misses is negligible.

D. Age of Information Distribution

Fig. 7 presents the cumulative distribution function (CDF)
of AoI on both an ideal channel and a channel affected by

2For τ < 20 the used delay distribution would make ω negative but, in
that case, we enforce ω = 0.
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Fig. 7. CDF of average age of information for different scheduling policies.

delays. The former case is depicted in Fig. 7a. We observe
that all the schedules exhibit a linear distribution and the
CDFs resemble parallel lines. The main difference between the
schedules is the amount of zeros. In fact, zeros are distributed
such that πG ≈ 25% and πD ≈ 50% , while πP = 0%.
The reason behind the higher number of zeros in πG is that
the schedule is optimized for delivering best AoI to the first
application of every grouping window. On the other hand,
πD delivers even more zeros because it serves best AoI to
at least one application in every grouping window. In fact,
applications with delay budgets can be postponed such that
more applications will read best AoI at the time of the new
update. From the plot, we als notice an interesting property
of AoI for periodic applications: πP delivers AoI that is
uniformly distributed in [0, 51].

Fig. 7b shows the CDF of AoI for πP , πD and πω on a
channel affected by delays. πD and its relative periodic, πP ,
have a similar distributions as they approximately share the
same ρ. The only difference between the two schedules is that
πP delivers updates regularly while πD may deliver either a
bit earlier or a bit later according to applications schedule.
Furthermore, none of the policies implement a mechanism
to mitigate delays. On the other hand, πω takes into account
“safety margins” for avoiding to serve applications with stale
data due to delays. As a result, we observe significant im-
provement on the X-axis between 20 ms and 60 ms.

E. A broader picture

It is difficult to provide a complete overview of periodic and
Grouping Window scheduling policies. In fact, there are many
possible parameters combinations and the results are strongly
dependent on the used delay distribution. In this section, we
select one of these configurations (τ = 40 ms, ε =10 ms) and
we study it over a range of delay distributions. Our goal
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is to give insights on how to select a suitable scheduling
policy on the basis of the delay distribution. To that end, we
adapt the shape parameter α of the Pareto delay distribution
to vary its 95:th percentile d95. d95 is in linear relation to
the grouping window ω of πω (c.f., equation 7), resulting in
smaller grouping windows for higher delay variation.

The figures in Fig. 8 set the periodic and Grouping Window
schedules in relation to each other in terms of misses, average
system AoI, and overhead. The upper scale of the x-axis
corresponds to the average sampling interval Ts resulting from
πω , which is applied in πP .

Fig. 8a displays the percentage of misses. Independently
from the extent of the delay distribution, the periodic schedule
is worse than our proposed schedule. In particular, when
Ts > 30 ms, the number of misses increases dramatically.
Furthermore, πω is constantly below 3%, achieving the design
goal of number of deadline misses mitigation.

Fig. 8b shows the average system AoI ∆A for the afore-
mentioned settings. We observe that, for the periodic schedule,
the greater the period Ts the higher the AoI. On the other
hand, the AoI for πω increases with the delay variation up
to d95 < 28 ms, and decreases after. In fact, the smaller
the extent of delay variations the more we get closer to
the perfect link scenario, where we already showed that the

Grouping Window approach outperforms the periodic. We find
particularly interesting that through this plot it is possible to
see which schedule is best according to the delay distribution,
e.g., when the two curves intersect at d95 = 22 ms and the
AoI of the Grouping Window schedule exceeds the AoI of
the periodic schedule.

Finally, in Fig. 8c we compare the ratio updates-requests.
We here observe that both πP and πω are similar. The gap
between the curves is to be imputed to the approximation
performed to make the two schedules comparable (πω mean
inter-arrival time).

F. Discussion

We proposed πG and πD, two scheduling policies designed
to deliver better ∆A than the periodic schedule πP . The
proposed policies deliver better ∆A when applied to an ideal
communication channel without delays. Nonetheless, when in-
troducing delays in the communication channel, the proposed
schedules are not better than the periodic in terms of misses.
For this reason, we introduced πω .

The Miss Avoidance Grouping Window, πω , is a scheduling
policy designed to impose an upper bound on the number of
misses induced by communication delays. We show that πω
always delivers fewer misses than πP . Nonetheless, when the
delay variations are big, the periodic policy is able to deliver
better ∆A than πω . This is due to the fact that πω imposes
a safety margin that results in sending updates unnecessarily
early.

We now discuss some implementation challenges. First, the
proposed scheduling policies are sensitive to the notion of
time. To some extent, the safety margin introduced to handle
random delays can also compensate for timing inaccuracies.
Furthermore, as the number of applications grows, the sched-
ule produced by the edge device may be very long and not
suitable to be stored in resource constrained devices, e.g.,
sensors. In this case, the edge should fragment such schedule,
push partial information to the sensor while keeping track
of the progress and renew the schedule when needed, for
every sensor. However, such strategy may be merged together
with schedule updates sometimes required by new applications
joining the system.

VII. CONCLUSION

We studied the problem of timely dissemination of sensor
data to applications with freshness requirements by means of a
digital twin. We minimize direct access to the possibly battery
powered physical devices yet improving Age of Information
as a data freshness metric. The proposed Age of Information-
aware scheduling policies allow the physical devices to push
sensor updates to the digital twin by grouping application
requests based on freshness criterion, thereby reducing the
number of sensor transmissions. Scheduling updates in a net-
work with communication delays is non-trivial. In fact, random
delays affect the Age of Information and are likely to result
in deadline misses, if the requirements are too stringent. By
estimating the random delay component, we introduce some



safety margin in the schedule to keep the misses below a target
level. Delaying replies to application requests in the favor of
awaiting fresh data has proven to be an efficient measure. We
numerically evaluate the proposed policies against a simple
yet widely used periodic scheduling and demonstrate that
our schedule, even with high delay variation, outperforms the
periodic schedule in terms of misses, at the cost of marginally
higher Age of Information.
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