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Abstract
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The increasing demand for industrial automation has motivated the development of
applications with strict latency requirements, namely, latency-sensitive applications. Such
latency requirements can be satisfied by offloading computationally intensive tasks to powerful
computing devices over a network at the cost of additional communication latency. Two
major computing paradigms are considered for this: (i) cloud computing and (ii) edge
computing. Cloud computing provides computation at remote datacenters, at the cost of longer
communication latency. Edge computing aims at reducing communication latency by bringing
computation closer to the users.  This doctoral dissertation mainly investigates relevant issues
regarding communication latency trade-offs between the aforementioned paradigms in the
context of latency-sensitive applications.

This work advances the state of the art with three major contributions. First, we design a
suite of scheduling algorithms which are performed on an edge device interposed between a co-
located sensor network and remote applications running in cloud datacenters. These algorithms
guarantee the fulfillment of latency-sensitive applications' requirements while maximizing the
battery life of sensing devices.  Second, we estimate under what conditions latency-sensitive
applications can be executed in cloud environments. From a broader perspective, we quantify
round-trip times needed to access cloud datacenters all around the world. From a narrower
perspective, we collect latency measurements to cloud datacenters in metropolitan areas
where over 70% of the world's population lives. This Internet-wide large-scale measurements
campaign allows us to draw statistically relevant conclusions concerning the readiness of the
cloud environments to host latency-sensitive applications. Finally, we devise a method to
quantify latency improvements that hypothetical edge server deployments could bring to users
within a network. This is achieved with a thorough analysis of round-trip times and paths
characterization resulting in the design of novel edge server placement algorithms. We show
trade-offs between number of edge servers deployed and latency improvements experienced by
users.

This dissertation contributes to the understanding of the communication latency in terms of
temporal and spacial distributions, its sources and implications on latency-sensitive applications.

Keywords: Latency Sensitive Applications, Cloud Computing, Edge Computing, Internet
Measurements, Age of Information

Lorenzo Corneo, Department of Information Technology, Computer Systems, Box 337,
Uppsala University, SE-75105 Uppsala, Sweden.

© Lorenzo Corneo 2021

ISSN 1651-6214
ISBN 978-91-513-1295-8
URN urn:nbn:se:uu:diva-452971 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-452971)









∗ ∗

∗













5th











Q3Q1

Q2 Q1

Sensor
network

Edge
server

Internet Cloud Application

Q1 Q3

Q1
Q2

Q3



Q1

Q2

Q3







Δ(t) = t− U(t)

t U(t)

Δ(t) τΔ

Δ(t) ≤ τΔ

T

Δ̄(t) =
1

T

∫ T

0
Δ(t)dt



Δ(t) ui

τΔ
τΔ

























∼

◦

∼
∼

∼

∼





10MB >1TB100MB 10GB 100GB

10
m

s
1h

r
50

m
s

10
0m

s
10

m
in

Motion-to-Photon

Human 
Reaction Time

Perceivable 
Latency

Smart home

Weather 
Monitoring

Farming

Smart city
W

ea
ra

bl
es

360o video

AR/VR

Camera/
Tra c 

Monitoring

Autonomous 
Vehicles

R
eq

ui
re

d 
La

te
nc

y

Data generated/entity

D2D

I II

IIIIV

<
$1

00
B

n
$1

00
-3

00
B

n
$3

00
-7

00
B

n
>

$7
00

B
n

Gaming

Streaming

Remote 
Surgery

10MB >1TB100MB 10GB 100GB

1h
r

50
m

s
10

0m
s

10
m

in

Smart home

W
ea

th
er

Smart city

W
ea

ra
bl

es

Camera/
Tra c 

Monitoring

Re
qu

ire
d 

La
te

nc
y

Data generated/entity

D2D

<$100Bn $100-300Bn $300-700Bn >$700Bn

Streaming

Remote 
Surgery

Fa
rm

360o video
AR/VR

Gaming

AV M
TP

H
RT

PL

10
m

s

Latency FZ

Bandwidth FZ

Edge FZ

1GB



≤ ≤

≤



AU
:C
an

be
rra

AU
:M

elb
ou

rne

AU
:Sy

dn
ey

BE
:B

rus
sel

s

BR
:Sa

o P
au

lo

CA
:M

on
tre

al

CA
:Q

ue
be

c

CA
:T

oro
nto

CH
:G

en
ev
a

CH
:Zu

ric
h

CN
:B

eij
ing

CN
:C
he

ng
du

CN
:H

an
gz
ho

u

CN
:H

on
g K

on
g

CN
:Sh

an
gh

ai

DE:B
erl

in

DE:F
ran

kfu
rt

ES
:M

ad
rid

FI:
Hels

ink
i

FR
:P
ari

s

GB
:Lo

nd
on

ID
:Ja

ka
rta

IE:
Dub

lin

IN
:B

en
ga

lur
u

IN
:C
he

nn
ai

IN
:H

yd
era

ba
d

IN
:M

um
ba

i

IT
:M

ila
n

JP
:O

sak
a

JP
:T

ok
yo

MY:
Ku

ala
 Lu

mpu
r

NL:A
mste

rda
m

NO:O
slo

NO:St
av
an

ge
r

PL
:W

ars
aw

SE
:St

oc
kh

olm

Sin
ga

po
re

So
uth

 K
ore

a

Ta
iw
an

US
:A

tla
nta

US
:D

all
as

US
:La

s V
eg

as

US
:N

ew
 Y

ork

US
:Sa

lt 
La

ke
 C

i

US
:Sa

n A
nto

nio

US
:Sa

n F
ran

cis
c

US
:Sa

n J
ose

US
:Se

att
le

US
:W

ash
ing

ton

ZA
:C
ap

e T
ow

n

ZA
:Jo

ha
nn

esb
urg

0

25

50

75

100

R
T

T
 [m

s]

≤



≤















.
.







Q1

Q2

Q3









. .
. .

.

. .

? =



. .
. .

. .

. .

. . .



. . .

. . .





. .
.

. . .

. . .

. .

. .

.

.

. .

. .



. .

. .



.

. .



. .

. .





Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2074

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-452971

ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2021



Paper I





Scheduling at the Edge for Assisting Cloud Real-Time Systems
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ABSTRACT

We study edge server support for multiple periodic real-time appli-

cations located in different clouds. The edge communicates both

with sensor devices over wireless sensor networks and with ap-

plications over Internet type networks. The edge caches sensor

data and can respond to multiple applications with different timing

requirements to the data. The purpose of caching is to reduce the

number of multiple direct accesses to the sensor since sensor com-

munication is very energy expensive. However, the data will then

age in the cache and eventually become stale for some application.

A push update method and the concept of age of information is

used to schedule data updates to the applications. An aging model

for periodic updates is derived. We propose that the scheduling

should take into account periodic sensor updates, the differences in

the periodic application updates, the aging in the cache and com-

munication variance. By numerical analysis we study the number

of deadline misses for two different scheduling policies with respect

to different periods.

CCS CONCEPTS

• Computer systems organization → Distributed architec-

tures; Cloud computing; Sensor networks;

KEYWORDS

Edge computing; cloud computing; sensor network; Industrial IoT;

energy efficiency
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1 INTRODUCTION

Cloud computing is increasingly becoming attractive for real-time

systems. One attractive advantage is that major part of the con-

trol application execution can be off-loaded from the sensing and

actuating devices to the cloud at the cost of communication. This

off-loading is particularly important for battery operated devices.
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for profit or commercial advantage and that copies bear this notice and the full citation
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Figure 1: A real-time cloud based systemwith an edge server

supporting an energy constrained sensor. The sensor data is

replicated at the “twin sensors”.

Although there are many scalability advantages with control

logic in the cloud, the approach also has several consequences. First,

since cloud servers are often provided at relatively long distances

from the controlled system, there will be a significant communi-

cation delay between the actual sensing event and the application

execution. In addition, a cloud server is designed to support many

simultaneous users, which may cause application scheduling delays

that may be significant. The data will age during the communica-

tion [6, 7], i.e. the information quality will decline. We here use the

metric age of information to measure the quality, defined as the age

of the data since it was generated. Eventually, the data will be too

old and not valid anymore for a correct real-time response, i.e. the

data has become stale and it will cause a real-time deadline miss.

Edge and fog computing [2] have been proposed to handle the

distance problem of the cloud. The idea is to “delegate” time and

safety critical functionality of the control logic to a server close

enough to the controlled system, typically located at the network

edge.

We consider real-time cloud-edge-sensor architectures composed

of sensor devices located on a local wireless network with an In-

ternet gateway, an edge server co-located with the gateway and a

cloud infrastructure, hosting several applications that need timely

data from the sensors. See figure 1. The edge acts as a smart caching

proxy between the sensor devices and the clouds. If the edge caches

sensor data, it can respond to multiple application requests at dif-

ferent clouds as long as the data is fresh enough for them.

In particular we consider periodic applications and battery op-

erated sensor devices that are duty cycled in order to save energy.

The caching can reduce the number of sensor accesses in order to

save energy but at the cost of some aging in the edge that increases

the probability of stale data. From energy conserving point of view

it is desirable to have as long period as possible between duty cy-

cles while still meeting the real-time requirements from the most

stringent update periods of the applications.
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The edge completely controls the communication to the sensor

and caches the most recent sensor data value in a “digital twin

sensor” (i.e. virtual sensor) [1], see figure, which is in turn exported

to the corresponding twins at the clouds. The sensor value will age

in the edge until it is renewed by a new sensor reading at a duty

cycle. The cached value is pushed to the twins according to the

periodicity of the applications. A problem with this approach is that

the sensor cycle and the applications have different periodicity. This

causes varying edge aging of data for the applications compared

to when all applications do their own individual reading directly

to the sensor. Aging increases the risk for stale data for correct

real-time execution compared to direct access to the sensor and

must be controlled at the edge. Our contributions are the following:

• Novel insights on how data ages in edge for periodic real-

time cloud applications.

• An edge scheduling strategy that moves aging in the edge

to aging in the cloud in order to decrease deadline misses.

We believe that we are among the first to study how a smart edge

server could support cloud based real-time applications using duty

cycled sensor devices.

In the following section we set a scenario and discuss related

work. In section 3 our cloud-edge-sensor system is described and

modelled with some simplifying assumptions. The model includes

communication latencies and aging processes for multiple applica-

tions with different update frequencies. Section 4 describes when

a scheduler in the edge may push data to the applications with

respect to the aging at the cloud, edge and the periodicity of the

applications. Then in the following section we evaluate two sched-

uling principles; a basic one determined by the periodicity of the

applications and a smarter one that also take into the account the

skew between the application periods. In section 5 we evaluate the

two principles with numerical analysis with respect to how long

time the data in the application is valid given the age of information

and real-time constraints of the applications. Our purpose of the

evaluation is to show the possible gain with a smart scheduling.

The paper is finalized with a conclusion section.

2 SCENARIO AND RELATEDWORK

As an illustrating scenario of a real-time cloud based system, con-

sider autonomous forklift trucks in a factory, moving goods on the

factory floor. To justify the need for delegating time critical func-

tions to the edge, assume humans moving more or less randomly

on the factory floor which requires the trucks to reliably and swiftly

avoid hitting them. The anti-collision function is preferably located

in the truck or a close-by server. On the other hand, a logistic pro-

gram on where to pick up goods and to calculate the best route for

the trucks is preferably done in the cloud since it needs all the truck

positions and data about the location and destination of the goods.

Still, the varying communication delays may cause stale data at the

cloud.

Fog computing [2], or also called edge computing, is a paradigm

that has been proposed to supply to the limitations of cloud com-

puting. For example, fog computing can be used to enable highly

responsive (e.g., low latency) cloud services, mask cloud outrages

[9] and enforce privacy [3]. Edge computing is particularly used to

enable mobility and one of the most successful implementations are

cloudlets [10]. Another strong point of edge computing is that it can

be used for offloading computation from constrained devices [4].

Previous effort in coupling data freshness and caching is presented

in [11] in the context of Information Centric Networking.

The metric age of information is a concept that was firstly intro-

duced by Kaul et al. [6] in the context of vehicular networks. The

age of information is a metric for measuring data freshness and is

formally defined as Δ(t) = t − u(t), where t is the current time and
u(t) is the time stamp of the freshest sensor update received by the
cloud.

3 OUR CLOUD-EDGE-SENSOR SYSTEM

Consider a system consisting of a sensor device, an edge server,

two or more clouds running different applications, as illustrated

in figure 1. An application is periodically scheduled according to

specifications, e.g a frequency of 4Hz (every 250ms). Hence, for

periodic applications it is deterministically given when in real time

the application should execute, given a start time for the first period.

Assume for simplicity, without sacrificing generality, only two

applications Appk and Appl , one in each cloud. The applications
are periodically executed with the frequencies fk , fl respectively,
where fk > fl . Each cloud has a “digital twin sensor”[1], a data
structure that is updated with the most recent value of the real

sensor via the edge. An application will then conceptually read

the twin in the same manner as if it would have been running on

the sensor device or edge. This twin value is time-stamped by the

sensor device when it is read, which means that an application can

decide if it is stale or not according to its own clock and real-time

specifications.1 Intuitively the update frequency of the digital twin

should be higher than the frequency of the application. But this

is not enough, the age of the value has also to be within real-time

boundaries. The value is aged by both the communication delays

as well as waiting times for transmission resources.

How is the digital twin updated? The most straightforward way

is the push model. The sensor device reads sensor data at wake-up

periods and pushes the data to the edge twin for further pushes

to the applications. Another model is request/response. Here the

application instead requests an update to its twin when needed

from the edge, i.e. a pull model. The edge in turn could also request

an update from the sensor before delivering the response.

Communication. The communication path of data to the cloud

has two distinct parts with different characteristics. The first part

is between the sensor device and edge, typically it is a wireless

sensor network optimized for small distances, energy conserva-

tion and predictable resource sharing. The second part of the path,

between the edge and a cloud, is assumed to be a fully powered,

high bandwidth network with regular Internet characteristics. The

cloud service could be far away causing a substantial communi-

cation latency and when the network is shared there will also be

considerable variance. The second part is normally dominating in

terms of communication latency. The variance in the first part can

in most circumstances be considered insignificant compared to the

second.

1We assume that all clocks are enough synchronized and that clock drifts between
synchronizations are not significant.
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Table 1: Parameters for data aging and timing bounds.

Δa (t) Age of data at application period.

τΔ Maximum acceptable age of data.

ui Time-stamp for the i:th sensor data.

ri Start of application for i:th data.

dse Packet delay between sensor and edge.

dec Packet delay between edge and cloud.

dv,i Delay variance for i:th data.

texec Tolerable length of application execution time.

σ Delay before start of execution time.

tc Minimum required execution time.

vi Valid execution time for i:th data.

The communication latency can also be divided into a fixed,

deterministic part and a varying part. The varying part includes

data buffering, network contention and re-transmissions. Within

the fixed we include propagation delays and transmission times

assuming a known packet size. Since the wireless sensor network

latency is both relatively small and typically time bounded we

take the simplifying assumption to consider it as a fixed part. For

this paper, packet losses are assumed to be handled by a reliable

transport service. Packet re-transmissions may cause very long

delays that breaks the age of information bounds. Other packet

loss organization can be considered for real-time system, e.g. for

periodic updates an idempotent approach may be favorable [5].

Edge. The edge server is fully powered and has the necessary

computational capacity for processing and storing sensor data as

well as servicing all requests from the applications. The edge also

implements a digital twin that is updated by the sensor device and

exported to the applications. It will initially request all applications’

real-time requirements, including the update frequencies in order

to optimize digital twin updates and sensor readings. Given these

requirements, the edge can instruct the sensor device to change the

length of the duty cycle in order to meet the aggregated require-

ments.

3.1 System behaviour

We now observe how sensor data ages in our system. Assume only

one application in one cloud for the time being. The application is

specified to run with frequency fa , or with period Ta=1/fa (from
now on, we use period and frequency interchangeably). For a single

application the sensor should produce data with at least the same

frequency fa . In other terms, the sensor will produce data periodi-
cally at time ui , such that ui+1=ui+Ta . That data would then age
on its way to the application. We assume u0 to be the time when
the sensor device starts producing updates.

For further explaining the aging process, consider first the case

with deterministic communication delays, as in figure 2(a). For a

single application there is here no edge caching and the sensor data

is directly propagated from the edge to the application. The delay

part from the sensor to the edge is denoted dse and the second part,
from the edge to the twin in the cloud, is denoted dec in the figure.
At time ri=ui+dse+dec the data appears in the cloud twin with
age Δa (t) = ri -ui and the application is now enabled to execute.

Intuitively, the application will perceive the age Δa (t) behaving

like a “saw tooth” function that grows linearly with time and drops

whenever a new update is received with a new time stamp.

dse+dec
t

u0 u2 ui ui+1
r0 r1 r2 ri ri+1texec

Ta

u1
dse

(a) Aging of data with application period Ta

vi

(b) Aging of data with variance delay

vi

(c) Aging of data by edge server and variance delay

Figure 2: Aging process and validity period (below the

graphs).

The execution could start immediately at ri , or in the general case
with a delay σ , i.e. at time ri + σ . The maximum allowed execution

time texec is given by the application requirements. This execution
interval is illustrated in the figure as an unfilled bar. The parameter

tc specifies the actual computational time needed for the execution
and must be less than texec . It allows the application scheduler to
decide where in the texec interval the actual computation will take
place, e.g. according to an Earliest Deadline First scheduling [8].

For periodic applications we therefore identify two timing bounds

that both must be met. The first is that the execution must take place

in the period texec , with start at ri +σ . The second bound is on the
age of data. Within texec the data must also be valid with respect to
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age. In figure 2(a) we use τΔ to set the maximum allowed data age.

It must be below τΔ at least tc during a texec interval to be valid.
Both conditions must be fulfilled otherwise we have a deadline

miss. Taken together they form a validity period, vi , that the ap-
plication only can execute in. For example, a system may specify

that it should periodically produce results every 10 seconds but no

later than 11 seconds but can tolerate up 2 second old data when it

starts the execution.

In Figure 2(a), where we have no variance the design parameters

τΔ, texec , σ and r0=dse+dec can hence be set to completely avoid
deadline misses.

In Figure 2(b), delay variance in the second communication part

is introduced as dv,i . The other parameters are the same as for
Figure 2(a). The data item for ri is now exposed to an additional

delay. As a result, the previous data in the twin will have to stay

longer before being replaced, possibly beyond τΔ. In the figure, at
time ri + σ , the planned starting time of the execution, the existing
value in the twin is too old and the application has to wait for an

update that arrives at ri + dv,i . When dv,i > σ the valid execution

periodvi hence becomes shorter. At some point it is shorter than tc
and then we have a deadline miss. Thus, with an increasing delay

variance the probability of misses will also increase.

Algorithm 1 illustrates the pseudo-code for checking the validity

of data. At the start of each execution period the application must

first check if the age of the data in the twin sensor is within age

boundaries during the time texec . If that is not the case the applica-
tion is put on hold awaiting an update to the twin. When an update

arrives the application once again reads the age of information and

checks against the remaining execution time.

Algorithm 1 Pseudo-code of the application.

1: function Application(τΔ, texec , tc )

2: if Δa (t ) + tc < τΔ then

3: do_job()

4: else

5: δ = expected_time_next_update()

6: if δ + tc < texec ∧ Δa (t + δ ) + tc < τΔ then

7: do_job()

8: else

9: misses++

10: Application(τΔ, texec , tc )

3.2 Multiple applications

We now consider the scenario in Figure 2(c) with two applications

with periods Tk and Tl , where Tk < Tl . In this scenario the edge is
active in caching sensor data. In order to meet the tightest update

period the sensor duty cycle is consequentially set toTk . This means
that the twin at the edge will see an “aging saw tooth” with period

Tk (see lower saw tooth in the figure). When the twin is updated

with a new value the edge will immediately forward it to Appk ,
which will see its own “saw tooth”, like the one for the single case.

The second application Appl has a longer period. In figure 2(c)
we otherwise use the same parameters for Appl as for figure 2(b),
including the delay variance to illustrate the impact of caching.

In 2(c) the edge forwards data at every ri − dec . The red dots are
put at these times and they also indicates how much the data has

aged before it is forwarded. The dashed lines from the dots are

Figure 3: AITE - the edge pushes sensor updates to the digi-

tal twin according to the application period without consid-

ering aging at the edge and communication variance.

Figure 4: AITC - the edge pushes sensor updates to the appli-

cation as soon as they get available.

communication times for the data to reach the cloud twin. It can

be observed that the dots form a regular pattern, with equivalent

distance on the edge aging teeth. This is a consequence of that Tl
is not a perfect multiple of Tk . When Tl=nTk . i.e. a multiple, all the
red dots will have same age of information. The age of the data at

the dots can be calculated as:

Δl (ri − dec ) = dse + [(i ·Tl ) mod Tk ] (1)

The valid execution periods,vi , are drawn at the bottom of figure

2(c). For event r1,v1 is shortened due an aging at the edge. For event
ri ,vi is shortened by an extended communication delay (i.e. caused
by delay variance). The valid execution may be shortened in both

ends and cause deadline misses.

4 SCHEDULING POLICIES

We now describe two scheduling policies in which the edge will

provide mechanisms for sending sensor updates to the digital twins

in the cloud according to applications execution periods.

The first scheduling policy is called “Age in the Edge” (AITE)

and is designed to deliver sensor updates to an application within

the execution time texec . Figure 3 shows how the age of sensor

updates is evolving for this policy. In the lower part of the graph,

we recognize the saw teeth at the edge and the validity periods.

The main drawback with AITE is the aging at the edge. The data

is already aged when pushed to the cloud and it may then also
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be exposed to network congestion prolonging the aging further.

An intuitive solution to improve the situation would be to more

frequently push updates towards the digital twin. For example, all

sensor updates could be forwarded to the twin. This solution will

however increase the number of updates in the network which is

not desirable.

The second scheduling policy is named “Age in the Cloud” (AITC)

and is illustrated in figure 4. It is designed to send the updates at the

beginning of a saw tooth rather than let them age at the edge before

pushing them as in AITE. Since it is predictable which updates will

be aged at the edge it is possible to reschedule the updates so that

there will always be a fresh value. Such a predicted aged update

could be sent as soon as it arrives, which is the case for u4 or the
update could be delayed to the next fresh value as for u3. When

it is sent earlier the update will age in the cloud instead but has

the advantage that it may tolerate communication variance better.

When it is sent later, the data is fresher and it may tolerate better

the age boundary even if it arrives later in the texec period.
In AITC the validity period will increase compared to the AITE

scenario. We show differences between AITE and AITC in figures

3 and 4 respectively.

5 EVALUATION

In this section we evaluate the aforementioned AITE and AITC

scheduling policies from the point of view of three different metrics.

First of all, we observe the experienced age at the cloud Δc (t) upon
reception and at application execution Δa (t). Then, we analyze the
amount of time an update is usable before breaking the deadlines

τΔ, τΔ − Δc (t)
+2. Finally, we discuss the validity execution inter-

val of an update, vi . These metrics are important as they reflect
application’s execution flexibility and probability of experiencing

real-time misses.

In our evaluation setup, the sensor device produces a new value

once every 100ms. We assume a fixed communication delay be-

tween the sensor device and the edge of dse = 1ms. The cloud

infrastructure is placed at a transmission and propagation distance

of dec = 100ms from the edge. The communication is affected by

an additional delay with variance (dv,i ), according to a Pareto dis-
tribution with an expectation value of 14ms. We arbitrarily selected

Pareto since it is commonly used for Internet delay distributions,

but the same general behavior and main conclusions would apply

to other distributions. The application in the cloud is executed once

everyTa = 190ms with an execution time of texec = 152ms starting
from the beginning of the application period (i.e. σ = 0) and tc = 0.
The upper bound on age of information for this application is set

to τΔ = 210ms.
We perform numerical evaluations based on the aging model,

the above parameters and the two scheduling principles described

in previous section, illustrated in figures 3 and 4. We collect the

results from 5000 application readings of the twin sensor in the

cloud. These 5000 readings are affected by 5000 delay samples from

the Pareto distribution. The maximum value of these samples is

161ms.

Figure 5: CDF of age of information for AITE and AITC

upon updates reception at the cloud, Δc (t), and at applica-

tion, Δa (t). On the right the variance distribution is shown.

5.1 Numerical results

Figure 5 shows the cumulative distribution function of the age of

information of the updates when they are received at the digital

twin in the cloud, Δc (t), and when the application is executed,

Δa (t). First of all, we discuss Δc (t). The distribution of the age of
information for AITE is basically linear due to the misalignment

between the sensor and application periods. This misalignment,

in the long run, forces the age of information at the application

to be uniformly distributed throughout the aging saw tooth. Fur-

thermore, communication variance (showed in the small box at the

right) is additive and extends age of information’s upper-bound.

The distribution of AITC, on the other hand, follows closely the

variance distribution since all the updates are sent immediately

upon reception at the edge. For this reason, the age of information

Δc (t) follows the variance dv,i +dse +dec . These two CDFs confirm
what can be expected about the relative parameters of edge aging

and expected variance.

From the point of view of the application, Δa (t), AITE shows
the worst performance. In fact, the misalignment of different peri-

ods impacts even more the already degraded distribution of Δc (t)
for AITE. On the other hand and despite the same misalignment

problem, AITC performs better than AITE. Intuitively, the better

freshness exhibited by “Δc (t)-AITC” approximately translates the
same “Δa (t)-AITC” closer to the origin on the X-axis. The previous
insights are crucial to properly dimension real-time requirements,

including τΔ.
Figure 6 presents the cumulative distribution function of the

amount of time an update is usable before breaking the timing

requirement τΔ, “τΔ − Δc (t)
+”. In other words, we can see for how

long one update will be valid before it gets too old for correct

processing. To better understand this plot, we provide the insight

that the more the curve is distributed on the right, the better. In fact,

the higher the numbers on the X-axis, the longer the validity time

on age of information. We observe that, for AITE, roughly 4% of the

updates is already too old for usage at the arrival at the cloud (value

0 in the plot). Maybe without surprise, AITC obtains better results.

The validity in AITC is better because the updates are forwarded

upon reception. Nonetheless, having a larger margin to τΔ is not

2Only positive values allowed, whenever negative the returned value is zero.
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Figure 6: CDF of the amount of time an update is usable be-

fore breaking timing requirement τΔ.
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Figure 7: Validity v of the updates at the application.

enough since the update must also be valid during the application’s

execution time texec . This leads us to our last proposed evaluation
metric.

Figure 7 shows the cumulative distribution function of v , the
validity interval of an update within the application’s execution

time texec . As for the previous plot, the more the CDF is distributed
on the right, the better. Also in this case, AITE performs worse

than AITC. For instance, 34% of the updates are not valid with

respect to texec (CDF value 0). This confirms the hypothesis made
in section 3.1 where we stated that both aging at the edge before

transmission and communication variance reduce the validity v
for such application. In contrast, AITC outperforms AITE as it is

designed to deliver the freshest updates as close as possible to the

application execution. From the figure we observe that we obtain

only 9% of misses and we also have significant improvement in the

validity of the received updates at the application.

5.2 Discussion

We evaluated two different scheduling policies, namely, AITE and

AITC. We demonstrated that aging in the cloud is better than ag-

ing in the edge, especially when updates must travel through the

Internet and are exposed to non-negligible communication vari-

ance. Furthermore, scheduling with knowledge about misalignment

between periods helps real-time applications in meeting their tim-

ing requirements without the need to emit updates with higher

frequencies, which would increase the network traffic and reduce

sensors battery life.

One may argue that the communication model used is too sim-

plistic, but this is done on purpose. In fact, the system already relies

on numerous parameters spread over several distributed compo-

nents. Adding further complexity will mask the base overall func-

tioning of the system impacting the understanding of the proposed

challenges and solutions.

6 CONCLUSION

We study the behaviour of a distributed real-time systems composed

of sensor devices, wireless sensor networks, edge server(s) and a

remote cloud infrastructure. We make use of the age of information

as a main metric for evaluating the freshness of sensor updates at

cloud based periodic applications with timing requirements. For

periodic applications we identify two validity timing bounds on

sensor data that both must be met. The first is that the data must

not be too old for the application. The second is that even if the

data is fresh enough it must also be available within the specified

execution time interval of the application to be valid. We showed

that an edge scheduler can play a fundamental role for delivering

fresh data within a specified execution interval of a periodic appli-

cation. We evaluated numerically two scheduling policies providing

insight on how to improve the validity time interval of updates

and we discussed trade offs among the several parameters of the

system. The purpose of the evaluation is to show the potential gain

of scheduling updates to applications with mismatched periodicity

and duty cycled sensors. Even if the evaluation is not comprehen-

sive we draw the conclusion that there are considerable possible

improvements a designer of an edge-cloud based real-time system

should be aware of. A more comprehensive study scaling for several

applications, cloud services, more realistic communication delays

and different scheduling parameters remains for future work.
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Abstract—We consider large scale Internet of Things applica-
tions requesting data from physical devices. We study the prob-
lem of timely dissemination of sensor data towards applications
with freshness requirements by means of a cache. We aim to
minimize direct access to the possibly battery powered physical
devices, yet improving Age of Information as a data freshness
metric.

We propose an Age of Information-aware scheduling policy for
the physical device to push sensor updates to the caches located
in cloud data centers. Such policy groups application requests
based on freshness thresholds, thereby reduces the number of
requests and threshold misses, and accounts for delay variation.
The policy is incrementally introduced as we study its behavior
over ideal and more realistic communication links with delay
variation. We numerically evaluate the proposed policy against
a simple yet widely used periodic schedule. We show that our
informed schedule outperforms the periodic schedule even under
high delay variations.

I. INTRODUCTION

Internet of Things (IoT) enabled applications in the domains
of health care, environmental and building monitoring must
rely on timely and fresh information gathered from a wide
plethora of sensing devices. Age of Information (AoI) [1], [2],
the age of the data since it was generated, is a metric indicator
of data freshness. AoI is formally defined as Δ(t) = t−U(t),
where t is the current time and U(t) the time stamp of the
most recent information update.
Since its introduction in [2], the AoI concept has been

studied with different approaches and in different contexts. AoI
minimization problems have been broadly studied in the field
of queuing theory in [2]–[8] and in the context of energy har-
vesting systems, where energy is intermittent due to uncertain
environmental conditions [9]–[14]. In wireless communica-
tion links, AoI-aware scheduling policies have been proposed
in [15]–[19]. Furthermore, AoI has been used for applications
in the domain of cloud gaming [20] and the dissemination of
content updates in mobile social networks [21].
Cloud computing [22] goes hand in hand with IoT. Cloud

servers provide seemingly unlimited storage and computa-
tional power, is geographically distributed and accessible all
around the globe. Cloud computing is particularly attractive
for off-loading storage and computation from battery and
battery-free operated sensing devices. Although there are many
scalability advantages, there is a significant communication
latency between the actual sensing event and the IoT applica-
tions in the cloud. To overcome this latency limitation, edge
and fog computing [23] have been proposed to move cloud

functionality closer to the physical devices, typically at the
edge of the network [24]. Time and safety critical functionality
can then be performed with lower latency.
Nonetheless, the intrinsic nature of IoT applications faces

scalability challenges itself. In fact, the sensing device is a
bottleneck as it is the main entity that generates information
for the IoT applications. In addition, sensing devices may
be energy constrained and should not have to reply to each
and every application request. Cloud and edge infrastructures
linking applications with the sensing devices are therefore
exposed to a trade-off to either provide fresh information
from the devices, by extensively accessing them, or provide
applications with cached information that are aged.
In this paper, we present an AoI-aware scheduling pol-

icy aimed to solve the problem of 1-to-many information
dissemination from sensors to several remote applications.
In particular, we focus on reducing sensor energy consump-
tion yet satisfying applications timing requirements in the
presence of varying communication delays. We consider a
system architecture composed by cloud servers, edge servers
and physical systems of sensing devices. We use the storage
and computational power provided by the cloud as a mean
for content distribution of sensor updates towards several
remote applications. Then, the edge aggregates applications
subscriptions to sensor updates coming from geo-distributed
cloud instances. As a result, the edge server generates “smart”
schedules to be downloaded to the sensor devices for duty-
cycling purposes. Our contributions for this work are:

• A novel AoI-aware scheduling policy for sensor networks
which reduces energy consumption while still ensuring
fresh enough information towards several remote appli-
cations.

• A method that allows remote applications to meet their
freshness requirements despite the effect of delay varia-
tions, especially between edge server and cloud.

The remainder of this paper is organized as follows. Sec. II
and III describe the system and performance metrics. Sec. IV
and V incrementally introduce scheduling policies in ideal and
delay constrained conditions, respectively. The performance of
the AoI-aware schedule is evaluated and discussed in Sec. VI.

II. SYSTEM
We consider the system illustrated in Fig. 1 that involves

sensing devices, an edge server and one or more cloud data
centers hosting different applications.
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Fig. 1. System architecture.

� Generic applications with requirements on data freshness
subscribe to the closest (in terms of latency) cloud instance.
They specify the interest in particular sensors, an execution
schedule and an upper-bound on freshness of the information.
We consider applications that run periodically but can tolerate
some variance in the scheduled execution times. Examples of
such applications are monitoring and control systems.

� The cloud instances export sensor readings through an
artifact commonly called “digital twin” sensor [25]. The
digital twin allows the applications to access cached copies of
sensor readings as if they were accessed directly at physical
sensing devices, with some aging. The use of such artifact is
motivated by latency. In fact, as the communication latency
between the applications and the physical sensors may be
significant, a pull update strategy may not be the best option
for applications with strict timing requirements. As a result,
we propose to update digital twins with a push policy from
the physical sensing devices and edge device. Digital twins
can be replicated at multiple cloud instances in order to min-
imize delay for data dissemination towards the applications.
Furthermore, the subscriptions and the requirements on digital
twin sensors are forwarded to an edge device on behalf of the
applications.

� The edge device is located close to the sensor network.
As first responsibility, it receives from cloud instances all the
subscriptions and requirements of the applications. Then, it
aggregates all the requirements and combines them together
creating a “smart” schedule. The aim of this schedule is
to instruct the sensors on when to push updates toward the
edge server. Such schedule is able to minimize the number
of sensor update transmissions yet providing the required
level of information freshness. Furthermore, it accounts for
communication delay towards the cloud infrastructures. �
After being computed, the schedule is pushed towards the
physical sensor.
The physical sensing devices consist of a sensor network

that provides sensor readings. The sensors in the network
are duty-cycled in order to save energy and prolong battery
lifetime. � The duty-cycling is dictated by the schedule
received by the paired edge device. � Once the edge server
receives the aforementioned sensor updates, it will push them
towards the respective digital twins in the cloud. Without loss
of generality, we consider sensor updates from one particular
sensor to a possibly large number of applications.

III. MODEL

A. Notation and Parameters

Let A = (a1, a2, ..., aN ) be the set of the N applications
with timing requirements in the system. These applications
are periodically executed and we indicate these periods with
the set T = (T1, T2, ..., TN ), where the subscript refers to
applications in set A.
The applications in set A request sensors information at

a cloud that provides digital twin services. The set of M ∈
N+ cloud instances is defined as C = (c1, c1, ..., cM ). We
indicate the latency (one way delay) between application a
and sensing devices as da,s. To be noticed, every application
specifies upper-bounds on AoI, τ , and may accept a delayed
response by ε time units and wait for a fresher update. We
make a simplifying assumption that all the applications have
the same freshness threshold τ .
Let xa = {t0 + i · Ta : i ∈ N+} be the set of periodic

execution times of application a ∈ A with period Ta ∈ T
and start time t0. As the application subscribes its interest in
sensors information to a cloud c ∈ C, the latter knows the
execution schedule of such application (xa). Additionally, we
define the set of applications subscribed to a particular cloud
c ∈ C as Ac, where Ac ⊆ A.
Finally, we define the execution schedule of all the appli-

cations subscribed at a cloud c ∈ C as Xc =
⋃

∀a∈Ac
xa.

To notice, all the elements in Xc are sorted such that xi <
xi+1, ∀x ∈ Xc ∧ i ∈ N+. For simplicity of notation and
readability, we assume that all the applications subscribe to
the same cloud and we therefore avoid suffix c throughout the
paper (i.e. Ac → A,Xc → X).

B. Evaluation Metrics

We take into account the following four evaluation metrics:
• The ratio between the number of transmitted sensor
updates and the total number of application requests in
the system, ρ, is defined as:

ρ =
# sensor updates

# applications requests
(1)

• The average Age of Information of all the applications in
the system, ΔA, is formally defined as:

ΔA =
1

|X|
|X|∑
i=0

Δ(xi) (2)

where xi is the i:th scheduled application execution and
Δ(·) is the instantaneous age of information defined as
Δ(t) = t − U(t), where t is the current time and U(t)
the update’s generation time [2].

• The average response time of all the running applications,
ReT, is defined as

ReT =
1

|X|
|X|∑
i=0

x̂i − xi (3)



where x̂i is the actual execution time of xi and we also
assume that x̂i > xi. The main idea behind this metric is
that the applications may have delay budgets and are able
to tolerate longer time for the response to a request with
the aim to obtain better AoI. The behavior of response
time is further explained in the next section.

• The number of deadline misses is delivered by a threshold
function that measures the number of stale updates that
have been read by the applications. We formally define
this metric as the cardinality of the elements older than
τ , for all the applications requests:

misses =
|{x : x ∈ X ∧Δ(x) > τ}|

|X| (4)

It is straightforward to extend the formula to a multi-
threshold case by adding individual application identifier suf-
fixes to thresholds (e.g., τa with a ∈ A). The resulting number
of misses would be the summation of individual applications
misses.

IV. SCHEDULING POLICIES

In this section we incrementally introduce scheduling poli-
cies to improve AoI. Schedules are created at the edge
server after receiving timing requirements of the applications,
forwarded by the cloud. Eventually, individual schedules are
downloaded into sensing devices. To start with, we assume
ideal communication links without propagation delay and
packet loss. Therefore, the delay between applications and
sensors da,s = 0ms (including between edge and cloud) and,
hence, AoI can reach 0ms as well.

A. Age of Information Optimal, π∗
Δ

π∗
Δ is a scheduling policy that delivers optimal AoI. It

achieves this by matching every application execution in
X with a sensor update. The Age of Information Optimal
scheduling policy is formally defined as:

π∗
Δ(X) =

⋃
x∈X

{x− da,s} (5)

To put it in simple words, we can interpret equation 5 as
a scheduling policy that instructs sensors to send one update
for every application execution. The update should be sent in
advance of a quantity equal to the delay between the sensing
device and the application. Assuming a link with no delays, it
is possible to skip the addend da,s. As a result, this will always
deliver ΔA = 0ms. As a consequence, the ratio between
applications requests and sensor reading transmissions is ρ = 1
and ReT = 0ms.

B. Periodic Updates, πP

While the Optimal AoI policy requires a sensor update for
each request, it is possible to schedule fewer updates if one
update can satisfy multiple requests, given that they are all
within the acceptable AoI. That is, we trade an increased
average AoI against fewer updates.

X

πG, πD

x1 x2 x3 x4 x5

τ

τ

Δ(x2)

Δ(x3)

Δ(x5)

u1 u2 u′
2

ε Δ′(x5)

Fig. 2. Schedule πG: Reducing sensor updates by exploiting intersections
between τ segments. The scheduled sensor updates are appropriately sched-
uled at the end of the intersections (illustrated as gray areas). In light gray,
an example of Schedule πD for x4,5 with a delayed update u′

2 to reduce the
age of information for x5.

Periodic delivery of sensor updates is one of the most
common approaches in practice. We formally define a periodic
scheduling policy as:

πP (Ts) = {t0 + i · Ts : i ∈ N+} (6)

where Ts is the updating period of sensor S and t0 is the time
of the first update.
What period should be chosen? The objective is to decrease

ρ while keeping Δ(·) bounded in the interval [0, τ ]. Hence,
there is an upper-bound on the period when a request will
provide the applications with stale data, i.e., older than τ .
The scheduling policies presented so far, namely, π∗

Δ and
πP , will be used as base lines for comparison between two
other forthcoming policies that trade more effectively ρ against
AoI.

C. Grouping Window, πG

In the periodic policy, we adjust the update period to ac-
commodate as many applications as possible for each update.
In the Grouping Window policy, we will instead maximize the
number of applications accessing the same update by breaking
the periodicity between the updates.
How do we assign the times for the updates within a group

of requests? Fig. 2 illustrates how they are grouped by using
τ . We assume that all the applications in A share the same
maximum acceptable τ .
In the figure, all the scheduled application executions in X

are represented as (red) dots on the time line at the bottom. At
the top time line, the corresponding sensor updates are marked
(in black). Every execution can tolerate an AoI between 0 and
τ . All the (red) dots within the shaded grey areas (grouping
windows) can share the same sensor update. A schedule πG

is then composed by {u1, u2} and so on. Intuitively, the
algorithm finds a window that includeds as many requests as
possible. These applications can be accommodated by a single
update and the delivery of stale data is then avoided. In the
figure, the updates are reduced from five to two. This algorithm
is expected to do a better balancing between ρ and AoI than
πP .



Algorithm 1: Grouping Window with Delay Budget
Data: X , the schedule of applications executions
τ , applications timing requirement
ε, applications delay budget

1 S ←− ∅;
2 i←− 0;
3 while i < |X| do

4 j ←− 1;
5 while Xi+j ≤ Xi + τ ∧ i+ j < |X| do

6 j ←− j + 1;

7 if ε > 0 ∧ ∃Xa ∈ [Xi, Xi + ε] then

8 S ←− S ∪ {Xi+|Xa|};
9 else

10 S ←− S ∪ {Xi};
11 i←− i+ j;

12 return S

D. Grouping Window with Delay Budget, πD

In this scheduling policy we will extend the Grouping
Window policy, πG, by using the observation that many
periodic application executions can tolerate a little delay, when
getting the data from the digital twin. We denominate this
policy Grouping Window with Delay Budget, πD. The small
delay acts as a delay budget for getting the data. The digital
twin can deliberately postpone the response to the application
up to the delay budget, we here call it ε. Why should we use
such delay budget? One answer is that it allows a scheduler
to detect that a digital twin can deliver a new update arriving
within the ε interval. Thus, the application will experience
better AoI than in the case of delivering the previous update.
As a result, we can trade some longer response time, for each
application and up to ε, against lower average AoI.
The operational difference between πG and πD is shown

in Fig. 2. The application running at time x4 can tolerate up
to ε delay and we exploit this for delivering better AoI at
time x5. Algorithm 1 shows a pseudo code implementation
of the Grouping Window with Delay Budget. At line 5-6, we
define the grouping window including in it all the applications
executions in the interval [Xi;Xi + τ ]. Then, at line 7, we
check whether there are other applications scheduled starting
from the first application up to ε. If that is the case, line 8,
we delay the sensor update up to the latest execution in the
aforementioned interval (Xi+|Xa| in the code). If there are no
additional application executions in [Xi, Xi + ε], the sensor
update is scheduled at Xi. In the remainder of the algorithm,
we create the schedule and we manipulate the indexes of set
X so to process it from beginning to end.

E. Relation between schedules

The presented schedules are related to each others. πG with
τ = 0 corresponds to π∗

Δ since no request can be grouped.
Likewise, πD with ε = 0 corresponds to πG and, for this

X

πG

τ ε

xi

Δ(xi)

Δ(xi)

ω

dMujuj−1

delay (ok)

delay (miss)

Fig. 3. The choice of the grouping window in πG depends on the delay
variation. We chose the grouping to minimize misses (i.e., ΔA > τ ), that is,
the margins from maximum acceptable age of information plus delayed reply
has to be larger than the grouping window plus a safety margin to account
for the delay distribution: τ + ε > ω + dM .

reason, Algorithm 1 is valid also for πG. For instance, πG can
be obtained by removing line 7-9 from Algorithm 1.

V. COMMUNICATION DELAYS

We assumed so far ideal communication channels without
propagation delay and errors. In this section we discuss the
impact of propagation delays on the performance of the sched-
ules and introduce a delay-aware adaptation of the previously
introduced policies. Delays can partly be compensated by
adapting the schedule if their variation is small and can be
tracked by an appropriate algorithm. In this paper, however,
we focus on the worst case scenario when the delay variation is
highly random. As a result, such variations cannot be tracked,
yet we can compensate for the minimum delay.
We distinguish between two communication segments: be-

tween edge and cloud, and cloud and applications as they
affect AoI in a different context. The delay between edge and
cloud affects a set of grouped application requests. On the
other hand, the delay between cloud and applications affects
individual application requests. Studying these delays sepa-
rately is motivated by the fact that we assume compensation
for constant delay components; a dominating delay variation
among cloud and applications can be considered a general case
covering delay variation on both segments, and a dominating
delay variation between edge and cloud includes the scenario
where applications are hosted in the same cloud as the digital
twin.

A. Digital Twin Strategies

The digital twins in the cloud are aware of the schedules
produced by the edge and can measure delays in order to
obtain delay averages and variance. On the basis of this
knowledge, they can estimate when sensor updates are likely
to come. In the best case, a twin could calculate a percentile,
say 95:th, of the delay distribution and use that together with
ε and τ to see if it is worth waiting for an update.
Given this knowledge, the twin can decide to either imme-

diately deliver the last update to the application or decide to
wait, if it is likely that a better update will come within the
ε time. The choice depends on which of the previous and the
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forthcoming updates that are expected will have the lowest
AoI.
Furthermore, for unpredictable communication delays there

is always a risk for stale data and out-of-order updates. We
assume digital twins to be preemptive, meaning that outdated
updates are automatically discarded.
For benchmarking our proposed policies we also con-

structed an “Oracle digital twin” who knows the exact com-
munication delay for each individual update, now as well as
in the future. This means that the Oracle can predict when all
updates will arrive to the twin and always decide whether it
is better to wait for an update or to deliver the previous one
in order to minimize the AoI.

B. Delay between Edge and Cloud

When communication delays affect the network path be-
tween an edge and a cloud, all the applications subscribed to
a particular digital twin will be out of synchronization with
respect to the updates. For example, assuming a temporary
delay at the path, the sensor updates will be received by
all the applications later than expected and they may all
experience stale information. Nonetheless, in case of frequent
sensor updates, this misalignment may be insignificant since
the application will get fresh enough data anyway in the
near future. We propose a simple yet effective way to handle
communication delays between edge and cloud in Sec. V-D.

C. Delay between Cloud and Applications

The delay between the twin in the cloud and the application
will not be discussed further besides the observation that it
only affects individual applications. The digital twin is aware
of these delays (e.g., via round-trip time estimation using
stamps). When the delays become significant the digital twin
can notify this to the edge device that will then re-arrange
the schedule. The method proposed in the next section can be
applied in that case.

D. Miss Avoidance Grouping Window, πω

The Grouping Window policy suffers from communication
induced delays in two ways. First, an update which is delayed
for more than ε will lead to a deadline miss for that application.
A deadline miss will also happens when an update arrives
after the end of the grouping window. With this policy, even a

small delay variations may significantly impact the number
of misses. We now propose a method for mitigating this
undesired sensitivity and suggest boundaries on the maximum
number of deadline misses. The main idea is to reduce
the length of the grouping window with a “safety margin”
that accounts for the variations in the delays. Intuitively, the
probability of misses will decrease with a smaller window.
Knowing the extent of delay variations and/or distributions

would assist system’s designers to target (and obtain) a limited
amount of deadline misses while trading off with higher ρ.
For example, assume that we aim at 5% misses over the total
number of application requests. In order to achieve this, we
must calculate the 95:th percentile of the delay distribution.
The aforementioned safety time is then set at the 95:th
percentile. For convenience in this paper we will call the safety
margin dM .
We now re-define the size of the grouping window with the

safety margin dM for varying delays as follow:

ω = τ + ε− dM (7)

A graphical representation of the scheduling policies is
shown in Fig. 3. It should be observed that the physical device
should now send the update in advance of a quantity equal to
dM−ε. Assuming that a schedule S′ is the output of Algorithm
1 (with τ = ω and ε = 01), a new schedule, S, with safety
margin dM can then be formalized in the following way:

S = {s+ ε− dM : s ∈ S′} (8)

Intuitively, while decreasing the number of misses, the new
schedule will provide higher average AoI.

VI. EVALUATION AND DISCUSSION

In this section we evaluate numerically the metrics intro-
duced in Sec. III-B comparing scheduling policies presented in
Sec. IV and V. For every simulation instance we provide 5min
of simulated time that provides enough statistical relevance
as we operate at milliseconds granularity. If not explicitly
mentioned, we assume N = 10 application with periodicity
randomly selected in the interval [100, 200) ms. When we
account for delays, we assume samples from a Pareto distri-
bution [26] with shape a = 1.672 and scale m = 5.
Whenever the periodic policy, πP , is compared to one of

our proposed schedule, we choose the updating period, Ts, to
correspond to the mean inter-arrival time between the updates
of such schedule. As a result, the periodic schedule and the
proposed one will have approximately the same ρ.

A. Age of Information vs. Ratio Updates-Requests

Figure 4 shows the hyper-plane average age of information
vs. ratio updates-requests in the ideal communication channel
case. We compare Age-Optimal π∗

Δ, Periodic πP , Grouping
Window πG and Grouping Window with Delay Budget πD

1ω as from Equation 7 with ε ≥ 0, while ε = 0 only for pseudo-code in
Algorithm 1, not for Equation 7 and 8.
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Fig. 5. System metrics evolution varying τ and ε on perfect links and links with random delay for the Grouping Window with Delay Budget schedule πD .
The data points (ε = 0) correspond to πG, the data point (τ = 0, ε = 0) to π∗
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Fig. 6. Percentage of misses evolution varying τ and ε for different scheduling policies.

scheduling policies. The star on the bottom-right corner rep-
resents the Age-Optimal schedule which provides best possible
AoI and maximum ρ, as this strategy schedules an update for
every application request. The up most dotted line shows the
evolution of the periodic schedule. We clearly see that the
smaller the period, the lower the AoI at the cost of higher ρ.
Roughly, ΔA ≈ Ts/2. Both πG and πD deliver better AoI for
the same updates/request ratio as they are designed to meet
applications requirements. The applications will be scheduled
in between a time window that, in the best case, provides AoI
0ms and, in the worst, 40ms. ΔA depends on the distribution
and the number of applications in the window. In the illustrated
example, πP (51), πG(40) and πD(40, 10) for ρ = 0.26, πG

and πD improveΔA by 40% and 66% respectively. The reason
for πD to be better than πG, in terms of AoI, is that the
applications are willing to pay some response time ReT for
fresher data.

B. Age of Information and Response Time

Figure 5 shows the evolution of the system metrics with
several τ and ε configurations for the πD schedule, both on a
perfect link and a link affected by delays. Fig. 5a shows the
average AoI, ΔA. Reading the heat map from top to bottom,
we evince that the bigger τ the higher ΔA, intuitively because
of the larger grouping window contributing to higher Δ(·). For
fixed τ values, the bigger ε the higher the response time ReT,
see Fig. 5b. As a result, ΔA decreases because the applications
are willing to wait some time to get fresher information. To
be noticed, ReT is significantly smaller than the tolerance ε.
Reading the matrix from top to bottom, we notice an increment
then decrement in ReT. In fact, when τ < ε, the applications
are willing to wait time to fetch fresher data, that will come
because of the smaller grouping window. As a result, the
average response time increases. On the other hand, when
τ > ε, updates come more seldom and the applications will
not wait: this result in smaller average ReT.
Figure 5c and 5d present the same metrics on a link affected



by delays. The same behavior described for the ideal link
applies in this case as well, with the difference that we must
account for an additive factor coming from the delays. These
contribute to increase ΔA, especially for big τ and small
ε. In fact, they affect particularly the applications that are
scheduled between the beginning of the grouping window and
the extent of the delay itself. To make things even worse,
if these applications have no delay budget, they will not be
able to compensate for delays, delivering poor AoI and higher
chances of misses. The response time is not significantly
affected by random delays as we assume an oracle digital twin,
see Sec. V-A.

C. Misses

We now consider how πP , πD and πω are affected in terms
of deadline misses. For this particular experiment, we aim at
5% misses and, because of the used Pareto distribution, we
obtain dM = d95 = 30ms. Fig. 6 provides an overview
of the evolution of misses, while varying τ and ε for the
aforementioned policies. As a remainder, a miss happens when
the sensor update is consumed by the application when it is
older than τ . We consider first πP , whose period is calculated
as the mean value of the inter-arrival time of the relative
Grouping Window schedule used for comparison. To put it
in other words, the two schedules will have the same ρ. Fig.
6a shows the performance of the periodic schedule on a perfect
link. We clearly see that, without delay budget, the percentage
of misses is rather high. On the other hand, if the applications
have delay budget, the periodic schedule is able to compensate.
When introducing random delays, see Fig. 6b, the periodic
scheduling delivers many more misses than in the previous
case. Again, if the applications do not account for some delay
budget, the performance is very poor.
Fig. 6c shows how the Grouping Window with Delay

Budget is affected by delays. The results are in line with
the periodic schedule as, for some configuration of (τ, ε), it
is slightly better and, for others, slightly worse. Nonetheless,
both Fig. 6c and 6b exhibit degraded performance. For this
reason, we introduced Miss Avoidance Grouping Window πω ,
and the obtained percentage of misses is shown in Fig. 6d. For
τ ≥ 20ms2 we notice a significant performance improvement
both over πP and πD. Surprisingly, and contrarily to all
the previous cases, some increasing ε deliver slightly higher
number of misses. The explanation behind this is rooted in
Equation 7. In fact, the bigger ε the bigger the grouping
window, meaning more applications executions in it. When
a random delay is greater than d95, all the applications in the
window will experience a deadline miss. That is, increasing ε
in πω may lead to deliver higher number of misses, yet reduc-
ing ρ. Nonetheless, such increment of misses is negligible.

D. Age of Information Distribution

Fig. 7 presents the cumulative distribution function (CDF)
of AoI on both an ideal channel and a channel affected by

2For τ < 20 the used delay distribution would make ω negative but, in
that case, we enforce ω = 0.
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Fig. 7. CDF of average age of information for different scheduling policies.

delays. The former case is depicted in Fig. 7a. We observe
that all the schedules exhibit a linear distribution and the
CDFs resemble parallel lines. The main difference between the
schedules is the amount of zeros. In fact, zeros are distributed
such that πG ≈ 25% and πD ≈ 50% , while πP = 0%.
The reason behind the higher number of zeros in πG is that
the schedule is optimized for delivering best AoI to the first
application of every grouping window. On the other hand,
πD delivers even more zeros because it serves best AoI to
at least one application in every grouping window. In fact,
applications with delay budgets can be postponed such that
more applications will read best AoI at the time of the new
update. From the plot, we als notice an interesting property
of AoI for periodic applications: πP delivers AoI that is
uniformly distributed in [0, 51].
Fig. 7b shows the CDF of AoI for πP , πD and πω on a

channel affected by delays. πD and its relative periodic, πP ,
have a similar distributions as they approximately share the
same ρ. The only difference between the two schedules is that
πP delivers updates regularly while πD may deliver either a
bit earlier or a bit later according to applications schedule.
Furthermore, none of the policies implement a mechanism
to mitigate delays. On the other hand, πω takes into account
“safety margins” for avoiding to serve applications with stale
data due to delays. As a result, we observe significant im-
provement on the X-axis between 20ms and 60ms.

E. A broader picture

It is difficult to provide a complete overview of periodic and
Grouping Window scheduling policies. In fact, there are many
possible parameters combinations and the results are strongly
dependent on the used delay distribution. In this section, we
select one of these configurations (τ = 40ms, ε =10ms) and
we study it over a range of delay distributions. Our goal
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is to give insights on how to select a suitable scheduling
policy on the basis of the delay distribution. To that end, we
adapt the shape parameter α of the Pareto delay distribution
to vary its 95:th percentile d95. d95 is in linear relation to
the grouping window ω of πω (c.f., equation 7), resulting in
smaller grouping windows for higher delay variation.
The figures in Fig. 8 set the periodic and Grouping Window

schedules in relation to each other in terms of misses, average
system AoI, and overhead. The upper scale of the x-axis
corresponds to the average sampling interval Ts resulting from
πω , which is applied in πP .
Fig. 8a displays the percentage of misses. Independently

from the extent of the delay distribution, the periodic schedule
is worse than our proposed schedule. In particular, when
Ts > 30ms, the number of misses increases dramatically.
Furthermore, πω is constantly below 3%, achieving the design
goal of number of deadline misses mitigation.
Fig. 8b shows the average system AoI ΔA for the afore-

mentioned settings. We observe that, for the periodic schedule,
the greater the period Ts the higher the AoI. On the other
hand, the AoI for πω increases with the delay variation up
to d95 < 28ms, and decreases after. In fact, the smaller
the extent of delay variations the more we get closer to
the perfect link scenario, where we already showed that the

Grouping Window approach outperforms the periodic. We find
particularly interesting that through this plot it is possible to
see which schedule is best according to the delay distribution,
e.g., when the two curves intersect at d95 = 22ms and the
AoI of the Grouping Window schedule exceeds the AoI of
the periodic schedule.
Finally, in Fig. 8c we compare the ratio updates-requests.

We here observe that both πP and πω are similar. The gap
between the curves is to be imputed to the approximation
performed to make the two schedules comparable (πω mean
inter-arrival time).

F. Discussion

We proposed πG and πD, two scheduling policies designed
to deliver better ΔA than the periodic schedule πP . The
proposed policies deliver better ΔA when applied to an ideal
communication channel without delays. Nonetheless, when in-
troducing delays in the communication channel, the proposed
schedules are not better than the periodic in terms of misses.
For this reason, we introduced πω .
The Miss Avoidance Grouping Window, πω , is a scheduling

policy designed to impose an upper bound on the number of
misses induced by communication delays. We show that πω

always delivers fewer misses than πP . Nonetheless, when the
delay variations are big, the periodic policy is able to deliver
better ΔA than πω . This is due to the fact that πω imposes
a safety margin that results in sending updates unnecessarily
early.
We now discuss some implementation challenges. First, the

proposed scheduling policies are sensitive to the notion of
time. To some extent, the safety margin introduced to handle
random delays can also compensate for timing inaccuracies.
Furthermore, as the number of applications grows, the sched-
ule produced by the edge device may be very long and not
suitable to be stored in resource constrained devices, e.g.,
sensors. In this case, the edge should fragment such schedule,
push partial information to the sensor while keeping track
of the progress and renew the schedule when needed, for
every sensor. However, such strategy may be merged together
with schedule updates sometimes required by new applications
joining the system.

VII. CONCLUSION

We studied the problem of timely dissemination of sensor
data to applications with freshness requirements by means of a
digital twin. We minimize direct access to the possibly battery
powered physical devices yet improving Age of Information
as a data freshness metric. The proposed Age of Information-
aware scheduling policies allow the physical devices to push
sensor updates to the digital twin by grouping application
requests based on freshness criterion, thereby reducing the
number of sensor transmissions. Scheduling updates in a net-
work with communication delays is non-trivial. In fact, random
delays affect the Age of Information and are likely to result
in deadline misses, if the requirements are too stringent. By
estimating the random delay component, we introduce some



safety margin in the schedule to keep the misses below a target
level. Delaying replies to application requests in the favor of
awaiting fresh data has proven to be an efficient measure. We
numerically evaluate the proposed policies against a simple
yet widely used periodic scheduling and demonstrate that
our schedule, even with high delay variation, outperforms the
periodic schedule in terms of misses, at the cost of marginally
higher Age of Information.
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ABSTRACT

Edge computing has gained attention from both academia and in-

dustry by pursuing two significant challenges: 1) moving latency

critical services closer to the users, 2) saving network bandwidth

by aggregating large flows before sending them to the cloud. While

the rationale appeared sound at its inception almost a decade ago,

several current trends are impacting it. Clouds have spread geo-

graphically reducing end-user latency, mobile phones’ computing

capabilities are improving, and network bandwidth at the core

keeps increasing. In this paper, we scrutinize edge computing, ex-

amining its outlook and future in the context of these trends. We

perform extensive client-to-cloud measurements using RIPE Atlas,

and show that latency reduction as motivation for edge is not as

persuasive as once believed; for most applications the cloud is al-

ready “close enough” for majority of the world’s population. This

implies that edge computing may only be applicable for certain

application niches, as opposed to a general-purpose solution.
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1 INTRODUCTION

Edge computing has emerged as a new, compellingly sounding

solution for improving and enabling many network applications.

One selling point of edge is improving latency by moving ser-

vices closer to end-users and pre-processing at the “edge” to save

the network (and cloud) from being overwhelmed by unforeseen

amounts of data [17]. This enables sophisticated applications, e.g.,
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augmented and virtual reality [23, 42], robotic control [14, 21, 45],

smart homes/cities [4], etc. Many concrete scenarios have been de-

veloped [11, 28] and industrial standardization initiatives, e.g., multi-

access edge computing are actively promoted by telcos [24, 67].

However, since edge’s inception around a decade ago, several

current trends have emerged which may impact its utility. First,

cloud infrastructure is spreading geographically by installing new

datacenters. For example, since 2010, Amazon has expanded its

cloud network from 3 to 16 countries. Furthermore, cloud providers

are establishing (and incorporating) specialized facilities to tackle

edge needs, e.g., CloudFront [2]. Second, modern smartphones come

equipped with considerable processing power, including specialized

chipsets, enabling them to process complex tasks, such as AR. On

the other hand, last-mile access being the latency bottleneck over

(cellular) wireless remains true [12, 31]. While new technologies,

such as 5G, show promise, initial tests report their performance to

be deficient in practice [49, 71]. Third, offloading [19, 58, 59], and

cyber foraging [8, 30], have become a reality with services like Siri

or Cortana. Products with tight latency constraints, e.g., cloud-based

gaming, are already on the market [3, 29, 44], implying improved

cloud access latencies. Recent study from Facebook reveals that

most users can reach their services in the cloud within 40 ms [60].

We believe these trends necessiate pruning popular assumptions

driving edge computing research and identifying more promising

future directions. We achieve this by examining the latency for

connecting to cloud globally. Our contributions are as follows.

(1)We conduct large-scale measurements over RIPE Atlas analyz-

ing user reachability to datacenters owned and operated by seven

cloud providers. Our measurements targeted 101 datacenters in 21

countries and lasted several months. Only [36] has conducted a

similar study to ours but it is limited to single cloud provider; the

most recent multi-cloud measurement is a decade old [40].

(2) We take a critical look at edge computing and its future po-

tential, by analyzing latency and bandwidth thresholds of several

applications reputedly enabled by edge computing. Extrapolating

our measurement results, we find that, contrary to popular belief,

the effectiveness of edge computing is limited to a few applications,

such as traffic monitoring, gaming, etc., which, incidentally, are not

the primary drivers of edge hype. Other applications can be either

supported by current cloud infrastructure (smart home, wearables)

or will require onboard processing for optimal operation.

Edge computing is still in flux. Some [27] see edge taking over

from the cloud; others see a combination [55]. Peterson et al. [52]

see edge and the democratization it offers as a cure for Internet ossi-

fication. Some argue for wide-spread in-network computation [57],



Figure 1: The popularity (in red) and publications (in blue) of

keywords “edge computing” (in solid line) and “cloud com-

puting” (in dashed line) in Google web searches and Google

scholar respectively.

blurring the borders of cloud and edge [32, 75]. Our focus, in this

paper, is on a general-purpose edge deployed by telcos/ISPs for a wide

range of applications [47]. While we show this path to have sub-

stantial hurdles, there may be better-suited scenarios for edge. We

return to these at the end of the paper.

2 A RETROSPECTIVE ON EDGE

Figure 1 captures the zeitgeist of “edge computing” over the past fif-

teen years. It compares the frequency of Google web searches1 and

scientific publications2 for “edge computing” and “cloud comput-

ing” from 2004 to 2019. Resultingly, three eras can be distinguished:

content delivery networks (CDN), cloud, and edge.

The term edge emerged when CDNs started to deploy edge

servers near their clients [20]. They acted as caches of content,

speeding up content delivery and reducing bandwidth usage. At

the same time, centralized, large-scale datacenter deployments

emerged, heralding the Cloud era. Cloud was a success as the

type and volume of application’s resources could be elastically

adjusted to meet the current demand on-the-fly. Application devel-

opers could also take advantage of a flexible “pay-as-you-go” model

for resource utilization.

Cloudlets [59] in 2009 started the Edge era and similar concepts,

such as fog computing [9]. Back then, the cloud was limited to a few

datacenters and unable to address the stringent latency and data

transport requirements of new use cases, such as the Internet-of-

Things (IoT). Therefore, the research community, including industry,

jumped at the opportunity to decouple network latency from the

computation time, and devised “edge computing". Many edge archi-

tectures have been proposed [46, 48], including exploiting last-mile

access points [13], crowdsourcing [26], and using IoT sensors [53].

We will next take a systematic look at various applications driving

the hype on edge computing and analyze their requirements.

3 DRIVERS OF THE EDGE HYPE

We capture applications used to motivate edge computing in Fig-

ure 2. The y-axis is the required latency scale, ranging from a few

milliseconds (ms) to an hour (hr). The x-axis shows the amount of

1Results obtained from https://trends.google.com/.
2Data was collected by a custom web crawler for Google Scholar, based on an open
source implementation [38].
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Figure 2: Driving edge applications represented as ellipses.

The orientation and width signify strictness in bandwidth

and latency requirements. Color denotes the expected mar-

ket share by the year 2025.

data an entity of each application generates, e.g., a camera, which

naturally correlates with the network bandwidth requirements. We

estimate application requirements by relying on theoretical anal-

ysis and preliminary implementations from previously published

results [7, 37, 42, 54, 64]. Each application is represented as an el-

lipse to overcompensate for any estimation errors. The form and

orientation of the ellipse represent the application’s strictness to-

wards latency/bandwidth constraints. The ellipse’s color denotes

application’s expected market share by 2025 in US dollars (data is

from [63]). Majority applications in Figure 2 are human-centric –

taking inputs and providing feedback to users, e.g. gaming. The

QoE of such applications is governed by strict latency thresholds

as human senses require, which we also draw in the figure.

(1) Motion-to-Photon (MTP) is the delay between user input and

its effect to be reflected on a display screen. MTP is guided by

the human vestibular system, which requires sensory inputs and

interactions to be in complete sync; failure of which results in

motion sickness and dizziness. Maintaining latency below MTP,

i.e., ≲ 20 ms, is critical for immersive applications, such as AR/VR,

360○ streaming, etc. [43]. Of this, ≈ 13 ms is taken up by the display

technology due to refresh rate, pixel switching, etc. which leaves a

budget of ≈ 7 ms for computing and rendering (including RTT to

server) [16]. Studies by NASA concludes that certain HUD systems

may require the compute part of MTP to be as low as 2.5 ms [7].

(2) Perceivable Latency (PL) is the threshold when the delay between

user input and visual feedback becomes large enough to be detected

by the human eye [54]. PL threshold plays a vital role in the QoE

of applications where the user interaction with the system is fully
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Figure 3: Cloud regions with compute DCs in (a) represent our targets, and probes in (b) are the vantage points for our study.

or semi passive, e.g., video streaming (stuttering), gaming (input

lags), etc. It is roughly estimated to be 100 ms.

(3) Human Reaction Time (HRT) is the delay between the presen-

tation of a stimulus and the associated motor response by a hu-

man. While HRT is highly dependent on the individual (and can

be improved by training), its value is reported to be ≈ 250 ms [73].

Applications that require active human engagement, e.g. remote

surgery, teleoperated vehicles etc., must operate within HRT.

Considering the similarities in operational thresholds, we group

the emerging applications by quadrants.

Quadrant I - Low Latency & Low Bandwidth: The bottom-left

(green) quadrant represents applications that produce only a small

volume of data but impose strict latency constraints for optimal

operation. Typical examples include wearables, health monitor-

ing, and other individual-focused applications. The core aim of

applications in Q1 is to perform “naturally”, i.e., to operate within

the PL threshold. Hence, they can benefit from the low latency

computation promised by the edge.

Quadrant II - Low Latency & High Bandwidth: The blue quadrant

at bottom-right encompasses applications that generate large data

volumes and impose strict latency constraints, e.g. autonomous ve-

hicles, AR/VR, cloud gaming, etc. Edge computing is considered to

be the key enabler for applications in Q2, as additional latencies to

compute at traditional cloud and bandwidth strain on backhaul net-

works to transport generated data may break the “immersiveness”

of end-users [37]. As most applications in this quadrant are ex-

pected to garner large market shares, these are popularly heralded

as the driving force behind edge computing.

Quadrant III - High Latency & High Bandwidth: The top-right

quadrant (yellow) is composed of applications that generate large

volumes of data but with “somewhat” relaxed timing constraints.

Take, for example, a smart city that implies automatic updates on

buses timetables, smart parking meters, and overall maintenance

with control mechanisms. The demand Q3 applications place on

edge computing is usually limited to data aggregation and pre-

processing to reduce network bandwidth load.

Quadrant IV - High Latency & Low Bandwidth: The final quadrant

in red, located top-left, comprises of applications that neither gen-

erate data of large volumes nor require strict latency for operation,

e.g. smart homes, weather monitoring, etc. While such applications

can leverage the existence of edge computing, they do not offer

compelling reasons for deploying edge servers.

4 AT THE EDGE OF THE CLOUD

One key driver of edge computing is its claimed ability to provide

services at lower latencies than the cloud. While this claim was

valid at the emergence of edge computing (circa 2009) due to sparse

cloud deployment [40] and higher latencies in the core network

than at the last-mile [39]; the world (and cloud) has changed in the

past decade. For instance, Amazon’s cloud has increased from 3

to 22 datacenter locations [1], and wide area latencies to Google’s

CDN have decreased from 100 ms to 10-25 ms [61]. On the other

hand, edge computing is still in its infancy with no (wide-area)

deployment to date, so the claims seem more speculative than real.

We re-evaluate the latency-centered claims of edge computing

via extensive global wide-area measurements to datacenters of

major cloud providers. We aim to understand if the cloud access

latency is still too high in satiating the requirements of emerging

applications, or are the clouds already “close enough”.

4.1 Measurement Methodology

End-Points.We chose 101 cloud regions with compute datacenters

(e.g. ec2) from seven cloud providers, Amazon, Google, Microsoft

Azure, Digital Ocean, Linode, Alibaba, and Vultr, as end-points,

shown in Figure 3a, and established a VM in every selected location.

The chosen operators are widely used and provide global coverage

with distinct network infrastructure. Some, e.g. Amazon, Google

etc. have installed private, large bandwidth, low latency network

backbones with wide-scale ISP peering, while others, e.g. Linode,

largely rely on the public Internet for connectivity.

Vantage Points.We used 3200+ RIPE Atlas probes [62] distributed

in 166 countries as vantage points for our measurements (shown

in Figure 3b). RIPE Atlas is a global Internet measurement platform

that is widely used for reachability, connectivity, and performance

studies. Atlas probes are installed in varying network environments
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Figure 4: Minimum latency to nearest datacenter globally.

(core, access, or home), allowing us to analyze the user reachability

to the cloud globally. We filter out all the probes that are clearly

installed in privileged locations (e.g., datacenters, cloud network)

from our measurements using their user-defined tags [6].

Experiment. We measured end-to-end latencies between users

(Atlas probes) and cloud datacenters within the same continent via

ping every three hours. For probes in continents with low data-

center density, e.g., Africa and South America, we also measured

latencies to datacenters in adjacent continents, i.e., Europe and

North America. Our measurements are ongoing since September

2019, and the results in this work are drawn from nine months of

data collection. Overall, our dataset includes 3.2 million datapoints

spanning several GBs and is available for public use [18].

4.2 Proximity to the Cloud

What is the least latency with which countries can access the nearest

datacenter? The question allows us to analyze the spread of cloud

across the globe in terms of latency. We extract the minimum ping
latency observed by the best-performing probe for every country to

any cloud datacenter. Figure 4 shows the map of latency distribution

per country. The results show that 32 countries can access the cloud

with RTTs less than 10 ms, and another 21 countries with RTTs

between 10 to 20 ms (MTP threshold). Our findings become more

intuitive upon correlating geographical latencies to locations of

targeted datacenters (red diamonds) in Figure 4. Countries with

cloud access latency less than 10 ms typically have one or more

local datacenters, and those with latencies less than 20 ms either

share borders or have direct fiber connectivity [68] to the country

housing a datacenter. In fact, all but 16 countries (mostly in Africa)

can access the cloud within PL threshold bounds (100 ms).

While the above shows only the best probe in every country,

Figure 5 plots the CDF of the minimum latency observed from every

probe in our dataset to any datacenter, grouped by continents. The

result includes probes without a stable Internet connection, or with

wireless connectivity. Despite this, the results support the findings

in Figure 4. Around 80% probes in Europe and North America –

≈50% of our total probes – can access a cloud datacenter within

MTP (20 ms). Probes in Oceania follow similar performance pat-

tern as almost all of them can access the cloud within 50 ms RTT.

Surprisingly, despite the low availability of cloud regions and sub-

standard network deployment, ≈75% probes in Africa and Latin

America achieve less than 100 ms cloud access latency and meet

PL thresholds. While the results in this section are “optimistic” – in

that they show the minimum latency – they also indicate that the

cloud potentially can support latency requirements for applications

driving edge computing.

4.3 Where is the Delay?

Insufficient Infrastructure Deployment. Our results above fo-

cused on best-case scenarios to illustrate the potential reach of the

cloud. We now turn to our entire latency dataset to shed light on

the reality of the cloud. Figure 6 shows the latency distribution of

all measurements grouped by continent. Probes in North America,

Europe, and Oceania exhibit excellent cloud reachability, withmore

than 75% of the probes achieving RTT below the PL threshold. The

top 25% probes in NA and EU can even support MTP threshold

required by edge-compelling applications, e.g. AR/VR, autonomous

vehicles, etc. The reason for this exceptional performance (also

hinted in §4.2) is the concentrated efforts of cloud providers to

deploy datacenters in these continents. Note that the long tail of

latency distribution for EU is largely missing from NA. On deeper

analysis, we found that the primary contributors to the tail are

probes in eastern EU and countries without local or neighboring

datacenters, in line with our assessment from Figure 4.

We now turn our focus on the remaining continents, i.e., Latin

America, Asia, and Africa. Cloud reachability from within these

continents is quite poor, and only a fraction of probes can satisfy the

PL threshold. Probes in Asia show much diverse latencies primarily

due to scattered datacenter deployment favoring certain countries,

like China and India. Unsurprisingly, the worst performance is in

Africa as it is severely under-served, both in cloud presence (only

one operating region) and network infrastructure [15].

Nature of last-mile access. Many studies analyzing the perfor-

mance of wireless access have been conducted in the past. Be itWiFi

in home networks [66] or LTE in public spaces [50], the consensus

of last-mile being the bottleneck is well established. Reasons for

lack of wireless performance can be many, from packet drops due

to contention, to network bufferbloating because of handovers [35].

As most applications in Figure 2 rely on wireless, we also analyze

its impact as access medium to the cloud.

We leverage RIPE Atlas user-provided tags [6] to filter probes

which indicate the type of access link, e.g. ethernet, broadband for

wired and lte, wifi, wlan for probes connected to network through

wireless links. We further filter probes deployed in similar regions

in both sets and verify that their baseline latency is in line with

their country’s average. Figure 7 compares the latencies observed by

both sets throughout our measurement period. We find that probes

tagged with wireless keywords perform consistently worse than

their wired counterparts – taking ≈2.5× longer to access the nearest

cloud region. Our result is in line with previous studies showing

that users can experience 10-40 ms of added latency while using

wireless as last-mile [65, 66]. While these results might improve in

future with solutions such as 5G promising much shorter wireless

latencies, however, the technology is still in its nascent stages and

these promises are waiting to be delivered [71].
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5 DISCUSSION

Revisiting Edge Applications. We reconsider Figure 2 with our

updated knowledge on real-world latencies from our measurements.

As per §4.3 and previous measurement studies, current wireless

technologies do not support access link latencies below 10 ms.

While new wireless standards promise to improve the situation, e.g.,

10 Gbps speeds with WiFi-6 [22] and 1 ms latency with 5G [34], the

reality may differ from claims. For example, at its inception in 2011,

LTE promised access latencies below 10 ms while the user is near

the base station [25]. However, recent measurements show that the

standard commonly experiences delays lasting several seconds due

to queue build-ups [35] and handovers [72]. Recent investigations

report performance of preliminary deployment of 5G in the real-

world to be sub-optimal [49, 71]. Likewise, Hadzic et al. [31] and

Cartas et al. [12] find that latency gains for accessing edge server

colocatedwith an LTE basestation is minimal compared to accessing

a datacenter located ≈ 1000 km away. While the “true” gains of 5G

are yet to be seen, considering supporting strict MTP thresholds,

even with edge servers located at basestations, seems uncertain.

From §4.2, we can conclude that for most of Europe and North

America (and majority of the world in best case), cloud latencies are

low enough to support applications operating under perceivable

latency. On the contrary, due to lack of network infrastructure,

some countries (in Asia & Africa) see cloud access latencies of 150–

200 ms, making perceivable latency unachievable but HRT-based

applications feasible by the cloud.

Figure 8 recaps the edge applications and their network require-

ments but now adds latency (red) and bandwidth (blue) “reality”

boundaries, as shaded regions (based on the results in §4). The

lower bound on latency is ≈10 ms, i.e., the current state of wireless

access latency. The upper bound is the human reaction time – as

this is supported by the cloud almost globally. For bandwidth, edge

is most useful for applications generating enough data to congest

the network. Specifically, benefits from the edge are greatest close

to the users, and decrease with increasing distance. Contrarily, it

is also well-established that the primary bandwidth bottleneck is

usually the last-mile [66]. While last-mile bandwidth congestion

also depends on contention and competition, based on previous

studies [35], we estimate 1GB/entity data generation to be a fitting

threshold for edge’s bandwidth aggregation gains.

The overlap is the “feasibility zone” (FZ) of edge computing. Ap-

plications in this zone, e.g., traffic camera monitoring, cloud gaming,
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Figure 8: Edge applications but with edge computing feasi-

bility zones (FZ). The red shaded area represents potential

latency gains, and the blue shaded region is the bandwidth

gain zone for utilizing edge.

etc., clearly benefit from a wide deployment of edge as they impose

both latency and bandwidth constraints. Surprisingly, the primary

drivers of edge computing research (the ones with the most hype)

do not fall in this zone. For some, it is due to low bandwidth re-

quirements (e.g., wearables), and for others, it is either too stringent

(e.g., autonomous vehicles) or too relaxed (e.g., smart cities) latency

constraints. Interestingly, the predicted market share of applica-

tions within the edge FZ pales compared to those for which edge

does not provide much benefit. Further, many applications in the

edge FZ can be supported by a wider deployment of cloud/network

infrastructure, especially in Asia, Latin America, and Africa.

Other Considerations. We recognize that our critique above may

not fully encompass the utility of edge computing due to possible

limitations in our methodology, emerging application diversity or



other complications that we may not have considered. For example,

while we place applications in edge FZ based on their latency and

bandwidth requirements, factors – like privacy – may push other

neighboring applications into the FZ envelope. We identify sev-

eral such factors that may impact our findings and require further

research investigation.

Network vs. application latency. It may be argued that our view-

point does not include additional processing delays imposed by

applications as we derive network latency from ping. However,
a recent study from Facebook report similar results as ours and

shows that clients rarely observe latencies above 40 ms while ac-

cessing their services hosted in the cloud globally [60]. Furthermore,

we plan to extend our measurements to include TCP-based prob-

ing techniques [41] that may better reflect behavior of application

traffic inbound cloud networks.

Computing power: Our discussion in this paper did not consider

the differences in computation power between the cloud and edge

servers. The more pervasive deployment edge needs, the lower the

likely processing capabilities of individual edge servers become. It

is thus quite possible that despite extensive edge deployment, faster

processing and availability of specialized hardware (like GPUs)

offered by the cloud may far exceed the network latency gains from

deploying applications at the edge [12].

Economies of scale: One decisive advantage cloud computing

is economies of scale, which edge is unlikely to meet. For cloud,

aggregating a large number of servers in a single location achieves

substantial savings on building, maintaining, and securing the in-

frastructure. For edge, marked gains in latency are possible only

via a wide and expensive deployment. While last-mile ISPs are best

placed to exploit this, recently, cloud providers have begun to utilize

the ISP edge [10, 70] and CDN infrastructure [2], further bringing

cloud closer to users. However, as the cloud footprint expands to

support lower latency requirements of emerging applications, the

cloud infrastructure cost will also increase [33].

6 FUTURE RESEARCH DIRECTIONS

With our global measurements, we showed that one of the com-

pelling motivators behind the edge – reduction in latency – has lost

much of its importance since the inception of the field almost a

decade ago. Through the course of this study, we found that latency

is only one piece in the puzzle and other considerations may serve

as more convincing drivers for edge. To conclude, we outline some

more promising directions for future research in edge computing.

Plausible deployments. General-purpose edge yields little bene-

fits in well-connected areas, but in developing regions, gains are

more significant, making edge deployment more compelling. Ef-

forts, therefore, should instead focus on those regions for deploy-

ment. Noghabi et al. [51] lists some application-specific deploy-

ments where edge may offer benefits even in developed regions, e.g.

handling video feeds from traffic cameras. Such deployments are

typically purpose-built to support an organization’s workload and

may emerge as the preferred solution in lieu of generic telco-hosted

edge. However, the race towards deploying an edge infrastructure

can be viewed as tussle between ISPs and cloud providers, both

competing for bigger share in “compute” market, which may sway

plausible deployments favoring one network type over the other. In

this case, research related to tradeoffs in placement and utilization

of processing capacity may yield interesting insights.

Privacy has been brought up as an advantage of edge, as it obviates

the need to send (sensitive) data to a central cloud. Encryption

alone may not be sufficient to hide all details [5, 56]. As concerns

for monitoring [69] and data collection mount, processing local

data locally and not sending it to the cloud oligopoly may become

more attractive. We see the potential for edge computing to address

these concerns, especially for (i) applications with a geographically

limited scope of interest and (ii) deployments offered by multiple

local providers [74] which are safeguarded by rules of the land.

Trust and security. Cloud operators invest heavily in infrastruc-

ture security, but how would the situation translate for a wide-

spread deployment of edge in remote locations? Could the same be

assumed of the (possibly myriad of) edge operators? What guar-

antees would an application provider have in these cases? In the

cloud the terms-of-operation agreement is between service and

a cloud provider and, in case of problems, litigation can be used.

Translating this to an edge with multiple participating (somewhat

transparent) entities requires much additional work.

7 CONCLUSION

In this paper, we investigated the rationale behind edge computing

in light of recent trends in cloud computing. Still much favored

by research and industry, we showed that original motivations for

edge computing are weak in today’s Internet. We performed an

extensive measurement study lasting several months, using probes

from RIPE Atlas platform in 166 countries, to measure the prox-

imity towards deployment of modern cloud providers. We found

that in well-connected areas, like Europe or North America, the

cloud is able to satisfy almost all application requirements that

have been envisioned for edge. The remaining ones may continue

to remain infeasible for immediately foreseeable future, as they

depend on the last-mile wireless access latency. While new tech-

nologies, like 5G, promise to improve the last-mile connectivity,

related studies measuring its performance over initial deployment

show sub-optimal results and full-fledged roll-out of 5G will take

several years to complete. While there may be other, non-technical

drivers for edge computing, our results clearly showed that from a

performance point of view, the potential benefits of edge computing

remain small. Only in less-connected areas, such as Africa, Latin

America, or parts of Asia have we discovered larger benefits from

edge computing. In conclusion, we believe that the research in edge

computing should shy away from latency-centric views and instead

focus its efforts in problem areas that are unresolved and can truly

benefit from the attention.
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ABSTRACT

In the early days of cloud computing, datacenters were sparsely

deployed at distant locations far from end-users with high end-to-

end communication latency. However, today’s cloud datacenters

have become more geographically spread, the bandwidth of the

networks keeps increasing, pushing the end-users latency down. In

this paper, we provide a comprehensive cloud reachability study as

we perform extensive global client-to-cloud latency measurements

towards 189 datacenters from all major cloud providers. We lever-

age the well-known measurement platform RIPE Atlas, involving

up to 8500 probes deployed in heterogeneous environments, e.g.,

home and offices. Our goal is to evaluate the suitability of modern

cloud environments for various current and predicted applications.

We achieve this by comparing our latency measurements against

known human perception thresholds and are able to draw infer-

ences on the suitability of current clouds for novel applications,

such as augmented reality. Our results indicate that the current

cloud coverage can easily support several latency-critical applica-

tions, like cloud gaming, for the majority of the world’s population.
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1 INTRODUCTION

During the last decade, cloud computing has gained a central role

in many networked services over the Internet. According to Gart-

ner [13], the cloud services market grossed $242.7 billion in 2019

and is expected to grow by 6.3% in 2020. This computing paradigm

became so popular due to its ability to provide seemingly unlimited

storage and computational capabilities through its highly efficient

and optimized hardware infrastructure. In the early days of cloud

computing, commodity equipment could not compare to datacen-

ters’ powerful hardware as it would have required considerable

purchasing expenses. Cloud computing provided a way to reduce

complex computation times dramatically. Additionally, the storage

functionality allowed users to synchronize personal data over mul-

tiple devices. Cloud computing, through its appealing and flexible

pricing models (e.g., pay-as-you-go [12, 15] and transient virtual

machines [32]), relieves businesses, institutions, and individuals

from equipment investments for storage and computation.

Since 2009, cloud computing has been challenged by the ad-

vent of edge computing, a new computing paradigm that has be-

come very popular and well received by both industry [4] and

academia [24, 30]. In fact, the research community started ques-

tioning the general applicability of cloud computing with respect

to emerging enabling technologies and novel applications, such as

augmented reality, industrial Internet of Things, etc. The primary

motivating assumption within the edge computing community is

rather long end-to-end cloud access latency due to limited and

sparse deployment of datacenters across the globe. As a result,

next-generation networked applications cannot meet their latency

requirements while operating over the cloud infrastructure.

However, since 2009, several trends in networking and IT have

drastically changed the reach of cloud computing. Cloud providers

have expanded their geographical coverage by extensively estab-

lishing cloud regions in different parts of the globe while preserving

their key success enabler – economies-of-scale. For example, Ama-

zon’s cloud network has expanded from 3 to 16 countries, with 22

newly built datacenters, over the last decade. Consequently, cloud

providers can now support computationally complex tasks, such

as voice assistance services like Siri or Cortana, without noticeable

delays. Moreover, a number of recent latency-critical applications,

e.g., cloud-based gaming [14, 22], backed by major cloud providers,

are already available in the market. Such offerings largely rely on

the throughput of the underlying networks, which continue to

show steady growth.
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We believe that, driven by the enthusiasm for newer computing

paradigms, both practitioners and researchers of edge computing

may have missed the significant efforts of cloud providers to be-

comemore andmore pervasive towards the end-users. Interestingly,

very little attention has been paid to quantify the reach and (conse-

quently) applicability of current cloud infrastructure for latency-

critical applications. Related works on this subject are either too

dated [20] or focus on a single cloud provider [19]. In this work,

we fill this chasm by expanding on our previous work [23] and

present a comprehensive global cloud reachability study – aimed

to estimate the cloud access latency and the path length between

end-users and the datacenters. The key contributions we make in

this paper are as follows:

(1)We conduct a large-scale measurement study over the span of

12 months, analyzing the reachability of ten major cloud networks –

totaling 189 datacenters deployed in 28 countries. We use more than

8000 RIPE Atlas probes deployed in 184 countries to periodically

measure user-to-cloud latency (ping) and path length (traceroute)
over ICMP and TCP. Our collected dataset reaches almost 60 GB in

size and is publicly available at [9].

(2)We analyze the spread of the clouds globally and identify their

suitability for deploying latency-critical applications in the cloud.

We do this by comparing the obtained latency distributions against

three well-known timing thresholds, namely, human reaction time,

human perceivable latency, and motion-to-photon. Throughout

the paper, we compare our results with these timing thresholds to

provide an application-centric perspective. Further, we take a closer

look at the cloud reachability in the US and in Asia: two regions

with different datacenters coverage as well as different networking

infrastructures.

(3)We conduct a thorough user-to-cloud path analysis to showcase

the extent of cloud pervasiveness over the Internet. Our results show

that cloud providers that deploy their private wide area network

(WAN) exhibit a high level of cloud pervasiveness. Conversely,

cloud providers that depend on public Internet have a low level

of pervasiveness. Furthermore, while we find latency differences

between private and public WANs to be comparable, providers on

the public WAN deliver higher latency variation, when compared

to providers with their own network infrastructure.

(4) Supported by our large scale dataset, we also present a plausible

road map for future cloud deployment strategies. Our findings show

that cloud deployment in continents such as North America, Eu-

rope, and Oceania would bring little benefit to the end-user latency

because of the existing high density of datacenter deployments.

In contrast, Asia, South America, and Africa can benefit greatly

from increased cloud deployment and show the largest potential in

latency gains.

The remainder of this paper is organized as follows. Section 2

describes the three latency concepts we use to analyze the per-

formance of cloud in meeting the latency requirements. Section 3

introduces our measurement methodology, while Section 4 presents

our findings on cloud reachability via our measurements. It is worth

noting that this work and the dataset we collected does not raise

any ethical issues. In Section 5, we discuss the implications of our

study as well as its limitations, while we provide the related work

in Section 6. Section 7 concludes our paper.

2 BACKGROUND

In this section, we describe three well-known timing thresholds that

we use to quantify the level of cloud reachability across the world.

Wematch these thresholds to the requirements of current and future

networked applications that demand strict latency requirements

for operation. As a result, we study cloud reachability from the

perspective of understanding if current cloud infrastructure is a

feasible option for supporting near-future applications.

(1) Motion-to-Photon (MTP) is the delay between user input and

its effect to be reflected on a display screen. MTP is guided by

the human vestibular system, which requires sensory inputs and

interactions to be in complete sync, failure of which results in

motion sickness and dizziness. Maintaining latency below MTP, i.e.,

� 20 ms, is key for immersive applications, such as AR/VR, 360◦

streaming, etc. [21]. Of this, ≈ 13 ms can be taken up by the display

technology due to refresh rate, pixel switching, etc., which leaves a

budget of ≈ 7 ms for computing and rendering (including RTT to

compute server) [7].

(2) Human Perceivable Latency (HPL) threshold is reached if the delay

between user input and visual feedback becomes large enough to be

detected by the human eye [27]. HPL threshold plays a key role in

the QoE of applications where the user interaction with the system

is fully or semi-passive, e.g., video streaming (stuttering), cloud

gaming (input lags), etc. HPL is roughly estimated to be 100 ms.

(3) Human Reaction Time (HRT) is the delay between the presen-

tation of a stimulus and the associated motor response by a hu-

man. While HRT is highly dependent on the individual (and can

be improved by training), its value is reported to be ≈ 250 ms [37].

Latencies for applications that require active human engagement,

such as remote surgery, teleoperated vehicles, etc., must operate

within HRT bounds.

3 MEASUREMENT METHODOLOGY

In this section, we describe our methodology for measuring cloud

reachability across the globe. We begin by introducing our selection

criteria for targeted datacenters and vantage points, followed by a

description of our experiments.

Table 1: Global density of cloud endpoints and their back-

bone infrastructure type used in our measurements.

Datacenters per continent Backbone

N/WEU NA SA AS AF OC

Amazon EC2 (AMZN) 6 6 1 6 1 1 Private

Google (GCP) 6 10 1 8 - 1 Private

Microsoft (MSFT) 12 10 1 11 2 4 Private

Digital Ocean (DO) 4 6 - 1 - - Semi

Alibaba (BABA) 2 2 - 16 - 1 Semi

Vultr (VLTR) 4 9 - 1 - 1 Public

Linode (LIN) 2 5 - 3 - 1 Public

AMZN Lightsail (LTSL) 4 4 - 4 - 1 Private

Oracle (ORCL) 4 4 1 7 - 2 Private

IBM (IBM) 6 6 - 1 - - Semi

Total 50 62 4 58 3 12
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(a) Distribution of datacenters operated by ninemajor cloud providers

(refer to Table 1 for per-provider distribution).

(b) Distribution of 8000+ RIPE Atlas probes used in our measure-

ments.

Figure 1: Global coverage of our measurement setup. Cloud datacenters in (a) represent our endpoints, and RIPE Atlas probes

in (b) are the vantage points for our measurements.

3.1 End-Points Selection

We chose datacenters from nine different cloud providers as end-

points, namely, Amazon, Google, Microsoft Azure, IBM, Oracle,

Alibaba, Digital Ocean, Linode, and Vultr. For Amazon, we chose

both its EC2 and Lightsail offerings. The chosen operators are

widely used, well-established, and provide global coverage with

a distinct infrastructure, that is, their backbones could be either

private or public. For every cloud provider, we retrieved the host

name of a public virtual machine hosted by CloudHarmony [8]. In

total, our dataset includes 189 cloud region end-points as targets,

the geo-distribution of which is shown in Figure 1(a). Moreover,

Table 1 shows the distribution of the datacenters in our dataset by

cloud provider and deployed continent.

Besides global coverage, cloud performance is also heavily influ-

enced by the network between users and datacenters, and between

datacenters. Some providers, e.g., Linode, have set up their datacen-

ters as independent “islands” and largely rely on the public Internet

for inter-datacenter connectivity. On the other hand, providers

such as Amazon have set up private, large-bandwidth, low latency

network backbones to interconnect all their datacenters [31]. Addi-

tionally, several cloud providers also sign agreements with major

ISPs operating globally to enable direct peering between the ISP

gateway and their private point-of-presence (PoP) [2]. This allows

end-users to avoid the public Internet completely while transiting

to cloud network. For instance, a recent study shows that Google

peers with more than 5700 ASes around the globe, and the num-

ber has been increasing consistently every month [6]. Table 1 also

lists whether a cloud provider has a fully-private (Private), private

within a continent (Semi), or a public Internet based (Public) net-

work backbone.

3.2 Vantage Points Selection

Our vantage points are probes from the RIPE Atlas platform [33],

which is a de-facto standard for conducting measurements within

the network research community. RIPE Atlas is a global Internet

measurement network, especially used for reachability, connec-

tivity, and performance studies. The platform includes thousands

of small hardware probes1 connected to the Internet all over the

globe. Users can perform active network measurements (ping or
traceroute, etc.) using these probes to end-points of their choice.
Atlas probes are installed in heterogeneous network environments,

such as core, access, or home networks, allowing us to analyze the

reachability of cloud datacenters globally. Despite Atlas’s dense

deployment, many of the probes are hosted by cloud and network

providers – allowing them to monitor their network reachability

from outside their infrastructure [3]. Since these probes do not

reflect the user connectivity and have the potential to add bias to

our measurements, we manually filter out all such probes from our

measurements using their user-defined tags [29] (e.g., datacentre,
us-east*, us-west*, gcp, and aws, etc.). This left us with more
than 8000 probes distributed in 184 countries across the globe.

Figure 1(b) shows the geo-distribution of the probes used in our

experiments. The majority of the selected probes are located in

Europe and North America (33.5% and 26.5%), which allowed us

to exhaustively analyze the performance of the bulk of datacenter

deployment on the same continents.

3.3 Experiments

Our objective was to analyze two key aspects of cloud reachability:

(i) user-to-cloud latency and (ii) path lengths. Both our experiments

ran in parallel from September 2019 to September 2020, resulting in

an ≈60 GB dataset. Our collected data is publicly available at [9].

(i) LatencyEstimation.Weestimate end-to-end latencies between

users and cloud datacenters via pingmeasurements. We configured
the Atlas probes to ping all available datacenters within the same
continent every 3 hours throughout the measurement period. For

probes in continents with low datacenter density, e.g., Africa and

South America, we also included ping latencies to datacenters in
adjacent continents, i.e., Europe and North America, respectively.

We augment the latencies from ICMP-based pings by those from

TCP traceroute, see (ii).

(ii) Path Length Estimation.We estimate the end-to-end distance

(as hop count) between users and cloud datacenters via traceroute

1RIPE Atlas now also integrates software probes but they were not yet available at the
time this study was carried out.
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measurements (§ 4.2) repeated on a daily basis. In addition to ICMP-

based traceroutes, we also launched TCP traceroute and record
per-hop latency. Unlike ICMP, our TCP measurements are guaran-

teed to be end-to-end and provide us with an accurate representa-

tion of connection latencies encountered by real applications oper-

ating in the cloud. The latency in the last-hop of TCP traceroute
characterizes probe-to-VM RTT, which we use to augment our la-

tency measurements from ping. Unlike our latency measurement
setup, we configured Atlas probes to record traceroutes towards
all datacenter endpoints. As a result, we were able to identify many

unique paths from users to cloud in our resulting dataset - specifi-

cally more than 450,000 in the US, 8345 in South America, nearly

3 million in Europe, over 630,000 in Asia, and 6880 in Africa. We

removed any unresponsive hops and private IP addresses in our

processing phase since they depend only on the internal LAN con-

figuration and are not part of the public Internet.

(iii) Network composition. To further quantify the footprint of

cloud providers and identify several organizations that operate on a

user’s path to the cloud, we first map the Autonomous System Num-

ber (ASN) with IP address of every hop recorded in our traceroute
measurement using PyASN [16]. Further, we query PeeringDB [26]

dataset, which provides us with the name, location, and network

type of organizations operating on the path.

Experiment configuration. In order to ensure that our analysis

is statistically significant, we calculate the minimum measurement

sample size required for each country. We define the required confi-

dence interval for the measurement as n =
z2×p̂(1−p̂)

ϵ 2
, where z is the

z-score, p̂ is the population proportion, n is the target sample size,
and ϵ is the margin of error. Therefore, for an interval of confidence
of 95% and an error of ϵ = 2%, we collect at least 2400 measure-
ments per country. Furthermore, while comparing the end-to-end

latencies from our ICMP and TCP measurements, we found ICMP

values to be consistently larger than TCP. This was the case in Asia,

Europe, Oceania and South America. On the other hand, TCP ex-

hibited larger distribution in Africa an North America, even though

the median RTT is comparable with ICMP. We believe this happens

because ICMP packets are often treated as low priority by cloud

organization’s firewall and can be treated differently than regular

application packets (like HTTP), which use TCP as the underlying

protocol. Therefore, while our TCP measurements closely mimic

application connectivity latencies, our ICMP-based measurements

represent the worst-case connectivity between user and cloud. A

more extensive comparison of the differences between TCP and

ICMP is left for future study.

4 MEASUREMENTS ANALYSIS

In this section, we offer a two-fold analysis mainly addressed to

estimate the pervasiveness of cloud datacenters, from the point of

view of access latency and access path length.

4.1 Cloud Access Latency

The Potential. We begin by showcasing the least possible latency

for a user to access the closest datacenter across the globe.We extract

the minimum ping latency observed by the best-performing probe
for every country to any cloud datacenter. Figure 2 shows the

Figure 2: Minimum latency to datacenters observed across

the globe.
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Figure 3: Distribution of minimum RTT by all probes to the

nearest datacenter grouped by continent.

distribution of latency per country as a heatmap. The results show

that 45 countries can access a cloud datacenter with RTTs less than

10ms, and 21 countries with RTTs between 10 to 20 ms. While our

results are “optimistic” – in that they show the minimum latency

– they also indicate that the cloud potentially is able to provide

latency within the boundaries of MTP to the majority of the world.

We will revisit this issue later in the paper.

Our findings become more intuitive when considering the den-

sity of datacenters across the globe, as shown in Figure 1(a). Coun-

tries with access latency less than 10 ms typically have a local

datacenter (one or more), which offers very low latency if accessed

from a managed (public or otherwise) network. Some countries,

such as the US, UK, Japan, and India have more than one datacenter

deployed by the same provider. Countries with access latencies

less than 20 ms either share borders or have direct fiber connec-

tivity [34] to the country housing a datacenter. Out of the rest, 49

countries have latencies between 20-40 ms and 53 between 40-100

ms. Note that probes in all but 16 countries (majorly in Africa) can

potentially access a cloud datacenter within HPL bounds (100 ms).

Figure 3 depicts the smallest latency distribution experienced by

every probe to any datacenter, grouped by continents. Note that

while the measurements are largely from probes deployed in home

networks, they also include probes which may not have a stable In-

ternet connection. Despite this, the results look quite in favor of the

cloud and support the findings in Figure 2. Around 80% of probes

in Europe and North America, which is around 50% of the total
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Figure 4: Distribution of all RTT values recorded from all

Atlas probes in our dataset to the closest datacenter.

number of probes used in our experiments, can access a datacen-

ter within 20 ms. Probes in Oceania follow a similar performance

pattern as almost all of them can access the cloud within 50 ms

RTT. Surprisingly, despite the low density of available datacenters

and substandard network deployment, 75% of probes in Africa and

Latin America achieve less than 100 ms access latency to the cloud,

thereby meeting HPL requirements. Almost all, but a few probes in

Africa, can reach the cloud within HRT threshold (i.e., 250 ms).

Takeaway – 168 countries out of a total of 184 in our dataset can

support applications bounded by human perception. All probes

(excluding long tails) in North America, South America, Europe,

and Oceania can reach the cloud within 90 ms. Moreover, slightly

more than 75% of the probes in Asia and Africa satisfy the HPL

threshold.

The Reality. Till now, our latency analysis focused on the best-

case scenarios to illustrate the potential reach of the cloud. We now

turn to our entire latency dataset to showcase what the reality of

cloud reachability is today. Figure 4 shows a comprehensive view

of our latency dataset. We show the distribution of all latencies

observed by probes to their nearest datacenter throughout our

measurements duration of 12 months.

It is evident that probes in North America, Europe, and Oceania

exhibit excellent cloud reachability.More than 75% of the total probes

in all three continents have RTT to the cloud within the HPL. A

closer look reveals that the top 25% of connected probes in North

America and Europe can reach the cloud within the bounds of MTP

latency, indicating that the cloud can support emerging applications

such as AR/VR and autonomous vehicles. The reason for this ex-

ceptional performance, as made evident from the previous section,

is the concentrated efforts of cloud providers to deploy datacenters

throughout the US and central Europe. Additionally, thanks to the

vast number of ISPs operating in these two continents, the majority

of users can consistently connect to the cloud via high-bandwidth,

low-latency fiber connections. However, note the long tail of la-

tency distribution for Europe, which is largely missing from North

America. The cause is the absence of a local datacenter or high

latency to connect to the one located in a neighbouring country.

The result is in line with our initial assessment of Figure 2, where

the bulk of countries exhibiting high access latencies did not have

a datacenter in close proximity.

We now focus on the remaining continents, i.e., South America,

Asia, and Africa. Cloud reachability from within these continents is

quite poor as only a fraction of probes are able to satisfy the 100ms

HPL threshold. Probes in Asia show very diverse latencies primarily

due to scattered datacenter deployment favoring certain countries,

like China and India. Unsurprisingly, the worst performance is in

Africa as the continent is severely under-served, both in terms of

cloud presence (only three operating datacenter in South Africa)

and reliable network infrastructure [5].

Takeaway – North America, Europe, and Oceania easily satisfy

the HPL, and almost 25% even support MTP latency. On the other

hand, Asia, South America, and Africa show considerably longer

latencies to the cloud due to a lack of extensive cloud and network

infrastructure deployment.

Wide Area Network Latency Differences. We now assess the

impact of network backbone infrastructure on cloud reachability

performance. As summarized in § 3.1, many cloud providers deploy

extensive private wide area network (WAN) to interconnect their

datacenters that provide clients fast-track paths to services hosted

in their infrastructure. Table 1 enlists the network backbone type

used by different cloud providers targeted in our measurements.

Figure 5 shows the distribution of the latencies achieved by Atlas

probes, at continental granularity, towards the closest datacenter

of every cloud provider. Since the aim of this work is not to provide

a benchmark study comparing the performance of different cloud

operators across the globe, we do not probe all cloud regions in this

analysis. Instead, we only draw results from those regions which

were found closest (in latency) to our vantage points.

From the figure, it is evident that the availability of private net-

work backbone in continents with extensive network deployment,

like North America and Europe, does not seem to have much im-

pact on cloud reachability. In fact, we find that all cloud providers

exhibit similar latency distributions in these regions – accentuated

more towards providers relying on the public Internet. In Oceania,

Amazon EC2, Alibaba Cloud, and Oracle achieve the least latency

results while Microsoft Azure and Linode perform similarly but

with higher variance. We justify their superior performance to their

extensive deployment in the continent. Within Asia, almost all

providers perform similarly, and we do not observe any significant

benefits favoring providers with private WAN and those relying

on public Internet. For South America, we probed Amazon EC2,

Microsoft, and Oracle since only those have datacenters deployed

within the continent. For the rest of the providers, we show la-

tencies from South American probes to their datacenters in North

America. We observe that cloud providers with local datacenter

deployment perform significantly better than those with infras-

tructure in the neighbouring continent. A similar trend can also

be observed in Africa, where providers with in-land datacenter

deployment (specifically Microsoft and Amazon EC2) show much

lower latency than their counterparts, which host datacenters in

the neighbouring continent of Europe. It is to be noted that we draw

our inferences from small-sized ICMP and TCP packets, and the

impact of private backbone will be far more significant for elephant

flows within the cloud infrastructure.
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Figure 5: Cloud access latency to the closest cloud datacenter of every provider in different continents.

(a) Probes RTT within HRT. (b) Probes RTT within HPL. (c) Probes RTT within MTP.

Figure 6: Global coverage of our measurement with respect to the three timing thresholds defined in §2
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Figure 7: Path length to the closest cloud.

Takeaway – The impact of private WAN availability on cloud

reachability is not as significant as otherwise assumed. In continents

with dense network deployment, public Internet delivers almost

similar performance compared to a cloud provider that deploys

its own private network backbones. Moreover, the availability of

datacenters within a continent impacts connectivity far more than

the type of interconnecting network infrastructure.

Cloud Application Readiness. We conclude this section by in-

vestigating cloud maturity level – the state of global cloud connec-

tivity (at country-level granularity) to achieve the timing thresholds

discussed in § 2, i.e., MTP, HPL, and HRT. Figure 6 illustrates the

global RTT distribution from all probes in our dataset, one for each

timing threshold. Different color groups denote different percentiles

of the distribution. The results suggest that almost every country

across the globe can consistently reach the closest cloud datacenter

within the boundaries of the HRT. In fact, only two (out of 184)

countries in our dataset achieve HRT less than 25% of the times,

and three countries lie between 50 and 75%. For HPL, we observe

that the cloud maturity level changes slightly compared to the HRT.
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Figure 8: Per-continent cloud pervasiveness.

The distribution of RTTs degrades only in certain countries, mainly

clustered in Central Africa, the Middle East, and South America.

Specifically, 140 countries achieve RTTs consistently within the

boundaries of the HPL, six achieve that only 50 to 75% of the times,

another six within 25 to 50% and, 16 countries fail to reliably meet

the HPL threshold. The distribution changes substantially for the

MTP threshold, where only 24 countries can consistently meet the

timing deadline (75–100%). Conversely, 125 countries outrightly

fail to meet the threshold (0–25%), while the remaining 25 countries

can reach cloud within MTP between 25–75% of the times.

Takeaway – The current cloud infrastructure is able to deliver net-

work latency compliant with both HRT and HPL safely. However,

only a small minority of countries reliably meet the MTP thresh-

old suggesting that either cloud deployment or network should be

improved.

4.2 Cloud Access Path Length

Distance to the Cloud. We complement our latency analysis in

the previous section by investigating path lengths to the cloud.
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Figure 9: Degree of the pervasiveness of the cloud providers in different continents.

The study allows us to better understand the state of user-to-cloud

connectivity from different parts of the globe over the Internet. We

exploit our traceroute measurements (see § 3.3 (ii)) and extract
distance from probe to the closest cloud datacenter (in terms of

routers), and organizations operating those routers (in terms of

ASNs). We derive the latter by mapping the IP addresses of on-

path routers to their ASN numbers and further correlating them

with distinct organizations using PeeringDB [26]. Figure 7 shows

our results, specifically the number of routers and ASNs on a path

between a probe and its nearest datacenter in every continent.

Our key findings are as follows. End-user paths to the cloud can

range anywhere between 7–10 hops on average and are shorter

in continents with extensive cloud presence (e.g., NA and EU).

However, most of these routers belong to a very small set of ASNs;

usually, the resulting paths connecting these routers aremanaged by

large network operators as well as cloud providers, and are highly

optimized. The largest chasm between the number of routers and

ASNs exists in Africa, showing the presence of long but managed

paths to the cloud (some even traversing long transatlantic links

to connect to datacenters located in NA). Overall, across the globe,

a typical user can traverse 3–4 ASNs, on average, before reaching

the nearest cloud region.

Takeaway – End-user path to the cloud is still quite long (in number

of hops). However, these long paths are operated by a few organiza-

tions showcasing a highly managed cloud network connectivity.

Pervasiveness of the Cloud. As we are interested in understand-

ing the degree of the pervasiveness of cloud networks, we hereby

investigate how much of the user-to-cloud path is owned by cloud

providers. We define cloud pervasiveness as the ratio between the

number of routers owned by the cloud providers and the overall

path length to the cloud. High pervasiveness indicates that the

cloud providers are very close to the end-users and, conversely, a

low ratio translates into cloud providers being faraway.

Figure 8 shows the extent of cloud pervasiveness of the clos-

est datacenter for all continents. We can observe that the cloud

providers already own 20–40% of the user-to-cloud path on av-

erage. It is also quite common for the cloud to own and operate

upwards of 50% of the path, often reaching 100% in some regions.

This indicates that the first public IP address encountered by the

probe is entry to the cloud network. We found this phenomenon

to be a common occurrence for probes installed in cities with a

colocated datacenter. On the other hand, some cloud providers rely

on the public Internet and do not own a private WAN (see Table 1).

Consequently, these providers only own the final hop, thus pushing

the distribution towards the lower end. To understand this further,

we investigate the impact of private and public WANs on cloud

provider’s pervasiveness.

Figure 9 depicts the continental cloud pervasiveness grouped

by providers. The figure provides immediate visual feedback for

distinguishing providers with private WANs from those relying

on the public Internet. Providers using the latter have a level of

pervasiveness – constantly below and capped at 50%. On the other

hand, Amazon, Google, IBM, and Microsoft exhibit a high degree

of cloud pervasiveness by abundantly owning a majority of routers

in the paths user-to-cloud. Note that the distributions of Amazon

through Africa, Oceania, and South America are skewed as those

measurements also target its datacenters in neighboring continents.

Takeaway – Cloud connectivity has become highly pervasive across

the globe, with providers installing managed network infrastruc-

tures and establishing peering agreements with ISPs in the region.

Of these, providers that make use of privately owned networks ex-

hibit a high degree of pervasiveness. Conversely, providers relying

on the public Internet have a low level of pervasiveness.

4.3 Cloud Access Case Studies

Case Study A: The United States of America. We now inves-

tigate the extent of cloud reachability by users within the United

States of America. We find the US as a good object of study since it

covers a large geographical area, has a large population, and has

remained the focal point for major cloud providers – as reflected by

the dense cloud presence within the country (Table 1). We selected

the most populated regions in the US using the US Primary Sta-

tistical Areas (PSA) [10, 36]. The federal government has defined

100 PSAs, which collectively house more than 80% of the total US

population. We further selected 93 PSAs (7 PSAs did not have any

functioning RIPE Atlas probe) and collected up to 25 probes within

a radius of 125 km from the center of PSA location. Overall, we

selected 701 probes, each performing multiple ping measurements
towards 15 datacenters belonging to all cloud providers within the

US. Figure 10 shows the results.

We show the minimum, median, and 95th percentile of latency
observed in every PSA. The distribution is weighted according to
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Figure 10: Distribution of RTT in US primary statistical ar-

eas weighted by normalized population.

the population of each PSA; visually, this translates to a higher

vertical step in the CDF, for a larger population. The median dis-

tribution shows that almost the entire US population has median

access latency below 75 ms – well within the HPL threshold. The

differences, however, show up for the 95th percentile distribution
of PSAs latency as it includes probes installed in imperfect network

conditions. Even in this case, ≈ 60% of the US population can reach

the cloud within the coveted 100 ms threshold.

Case Study B: Asia. We contrast our analysis above by focusing

on the state of cloud access in Asia. As previously hinted in § 4.1,

latency distributions in Asia are rather skewed, resulting in unequal

performance throughout the continent. To further investigate the

cause, we carefully select seven Asian countries based on their land-

mass and physical distance to the cloud. Specifically, we investigate

five countries with local datacenter deployments, i.e., China (48

probes), India (108 probes), Singapore (80 probes), Korea (20 probes),

and Japan (188 probes); Pakistan (12 probes), which directly shares

borders with the country with datacenter (India), and Iran (120

probes), which is farthest from any datacenter in the continent,

nearest deployment in UAE and India. Figure 11 shows the results.

It is evident from the figure that countries with locally deployed

datacenter can consistently meet the HPL threshold (100 ms). On

the other hand, the impact of large geographical distance from the

nearest datacenter, becomes evident in countries with no in-land

datacenter. For instance, only 40% of samples from Pakistan are

below 100 ms, while the rest can only satisfy the HRT threshold

(250 ms). Finally, being Iran the geographically farthest from any

datacenter, the minimum latency to reach the cloud is ≈200 ms, and

almost 30% of samples did not even satisfy the HRT threshold.

Takeaway – The current cloud presence in the US can easily support

the bulk of emerging applications, bounded by HPL constraints,

for the majority of the population. On the other hand, while cloud

reachability in Asia is generally good for countries with local de-

ployment (e.g., China, Korea, Japan, India), it gets significantly

worse with increasing geographical distance from the physical lo-

cation of datacenters. Furthermore, the state of the user’s network

connectivity does not seem to have much effect on cloud reachabil-

ity, as evident from consistently high latencies achieved by probes

in Iran.
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Figure 11: Distribution of RTT in someAsian countries with

and without in-country datacenters.

5 DISCUSSION

Vantage Points Representativeness. It is well known that a vast

majority of cloud-hosted applications (e.g., HTTP-based) use TCP

as their transport protocol and TCP traffic dominates over other pro-

tocols over the Internet [35]. Hence, we believe that our TCP-based

measurements closely reflect realistic connection establishment

overheads an application would experience while connecting to

the cloud. Furthermore, our 12 month data collection absorbs the

impact of temporally insignificant changes on the network. On

the other hand, our measurements might fall short of accounting

for the factors that affect the end-to-end latency of a service, e.g.,

interactions within the protocol stack or amongst entities on the

service delivery route, etc. The most prominent lack in our analysis

is the inability to showcase the impact of queuing delays observed

by regular application traffic due to significantly smaller footprint

of ping packets. Hence, the latencies in this work can be viewed as

the minimum end-to-end delay bound an application can observe

while connecting to the cloud.

Another limitation of our study stems from our choice of mea-

surement platform. While RIPE Atlas is considered to be a gold-

standard within the Internet research community, it is also influ-

enced by several deployment biases that readers should be aware of.

Atlas probes are mostly hosted by network enthusiasts and network

service providers, which can skew the availability and deployment

configurations of the probe. As discussed in § 3.2, while a vast ma-

jority of Atlas probes are available in Europe and North America,

only a fraction (< 10%) of the probes are deployed in Africa. Fur-

thermore, even within Europe and North America (see Fig.1(b)), the

probes are not uniformly distributed over the continent’s geogra-

phy. As a result, our dataset includes both countries with extremely

dense probe availability and those without many options. While

we compensate for some of these biases in our post-collection anal-

ysis, e.g., by carefully pruning out probes installed in privileged

networks, we do not have much control over others.

Measurements Duration. Would it be possible to obtain similar

results with only one month worth of measurements? We want to

stress the fact that this question can be answered only by analyzing

a long-term dataset. To provide an answer to the question, we

isolated our measurements from four cloud providers: two with

private WAN and two relying on the public Internet. We compared
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the first four months of measurements, divided into intervals of one

month. We found out that one provider with private WAN and one

without exhibited very consistent and reliable connectivity. The

other two providers also had very similar performance across three

months (negligible change) of measurements. However, during

one month (October 2019) these providers experienced significant

divergence as their latency performances were rather degradedwith

respect to the usual. However, we have no means of ascertaining

the root cause behind this. Therefore, we conclude that, most likely,

we could reach similar conclusions with only 1 month of data, but

this strongly depends on the time and interval of the measurements.

In other words, without a known baseline, we would not know if a

particular time period is “usual” or “unusual”.

Where to Proceed from Here. Can existing cloud infrastructure

support the operation of future-forward latency-critical applications?

Our large-scale latency measurements have answered this question

affirmatively for the majority of the continents and for the appli-

cations requiring a latency bounded by HRT. On the other hand,

applications requiring latency below MTP, such as augmented real-

ity, can only be supported, with the current cloud infrastructure,

within North America, Europe and Oceania. We also found that

private WANs have little-to-no impact in bringing cloud coverage

any closer to users. Providers that rely on public Internet achieve

almost similar latencies to those with private network backbone

in regions without local datacenter deployment. However, while

establishing new cloud regions globally may seem like the only

viable option to drive down cloud access latencies, we also show

that in regions with already high degree of cloud pervasiveness and

excellent network connectivity, deploying more datacenters does

not bring much benefit (e.g., the USA). Therefore, a key takeaway

that existing cloud providers can take from this study could be to

prioritize infrastructure expansion in under-provisioned regions,

specifically Africa, Asia, and South America.

6 RELATEDWORK

To the best of our knowledge, the first significant cloud reachability

study dates back to 2010 [20]. However, the substantial evolution

of cloud computing and datacenter deployments over the decade

since its publication suggests the findings of that paper are worth-

while updating to reflect today’s state of the art. More recently, the

cloud performance report 2019 from ThousandEyes2 monitors and

compares 95 end-points’ performance to the major cloud providers

(Amazon, Microsoft, Google, Alibaba, and IBM) for a maximum

period of one month during the year 2019. Their measurement

methodology consists of collecting network latency and paths from

98 TCP-based vantage points in various countries worldwide. In our

study, we target almost the double of endpoints (189), and we use

more vantage points (up to 8500) located in 184 different countries.

Furthermore, our measurements have been collected for a signifi-

cantly longer period of time. For these reasons, we believe our study

to be more comprehensive and broad. Furthermore, we expand our

previous work [23] with more measurements and vantage points,

as well as a thorough path characterization study. In particular, our

cloud pervasiveness study reports similar findings to [1], where

2https://www.thousandeyes.com/research/cloud-performance.

Todd et al. show that cloud providers are already bypassing Tier-1

providers, therefore making the Internet “flatter” (less hierarchical).

Related methodology partly used in our evaluation can be found

in [25], [18], and [17]. In [25], the authors measured the perfor-

mance of the 5G deployment in the USA. In their measurements,

they selected three cloud providers (Amazon, Google, and Azure)

and evaluated the base RTT without cross-traffic, and download

and upload bandwidth and latency times. The results show that the

5G RTT latency has little improvement compared to 4G, and the

first-hop accounts for ∼ 27 ms while the remaining latency in the

path towards the cloud is similar to our measurements. Therefore,

at this stage of 5G deployment, there is still little improvement in

the last mile connectivity times, but it is expected to be addressed

in the future and achieve the promised sub-millisecond RTT. In

[18], the authors compare the performance of ICMP-based ping and

traceroute tools to detect cloud service providers’ outages. Themain

issue regarding ICMPmeasurements is that it can underestimate the

availability as it only checks the network-level connectivity and not

the application itself. To validate this hypothesis, the authors com-

pare ICMP-traceroute against TCP-traceroute, and the experimental

results show that there is disagreement on some measurements (up

to 3%) where the ICMP fails while HTTP succeeds, and vice-versa.

In [17], where the authors analyzed the inter-continental paths

connecting three big cloud providers, namely Amazon, Google, and

Azure. They found out that those cloud providers have dedicated

paths connecting their data-centers, which increased the network

path performance (lower packet loss and latency) compared to

regular inter-continental data traversal through different indepen-

dent ASes. We complement and confirm their analysis by adding

the latency information from several Atlas probes to those cloud

providers, providing a bigger picture and how close to each cloud

provider each country is.

Within the same topic, in [11], the authors study cloud provider

outages and dig into the causes of such events by analyzing the

connectivity between major cloud service providers, e.g., Google,

Amazon, Microsoft, etc. To facilitate the analysis, the authors define

a set of metrics based on graph properties and measure the inter-

connectivity between the ASes of those cloud service providers.

In [38], the authors propose a mechanism to verify whether cloud

providers are respecting the subscribed SLAs for packets being

processed in cloud middleboxes. In [28], the authors performed a

large scale study of web page performance, showing the impact of

different Web protocols and access media in the performance of

page loading and overall user experience.

7 CONCLUSION

We conducted a large-scale cloud reachability study with the aim

to evaluate the current state of cloud connectivity globally. In our

study, we targeted 189 compute-capable cloud regions of ten major

cloud networks from 8500 globally distributed RIPE Atlas probes for

a period of 12 months. Through our extensive analysis of network

latency, we found that the majority of the world population can

access a cloud facility within 100ms – which is a critical threshold

for many future-forward networked applications. Furthermore, our

analysis of user-to-cloud path lengths revealed that cloud providers

relying on private WAN for network interconnections are already
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very pervasive since the majority of the paths transit through their

infrastructure. However, we also found that end-to-end network

latency is rarely impacted by underlying network infrastructure as

even providers relying on public Internet achieve similar latencies,

albeit with higher variability. Our case study analysis showcased

the impact of geographical distance to cloud by analysing regions

with contrasting datatcenter deployment density – the USA and

Asia. Our results revealed that extensive datacenter deployment is

key to make cloud access latencies consistently compatible with

requirements of next-generation applications, especially for Asia,

South America, and Africa.
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Abstract—Edge computing aims to enable applications with
stringent latency requirements, e.g., augmented reality, and tame
the overwhelming data streams generated by IoT devices. A core
principle of this paradigm is to bring the computation from a
distant cloud closer to service consumers and data producers.
Consequentially, the issue of edge computing facilities’ placement
arises. We present a comprehensive analysis suggesting where to
place general-purpose edge computing resources on an Internet-
wide scale. We base our conclusions on extensive real-world
network measurements. We perform extensive traceroute mea-
surements from RIPE Atlas to datacenters in the US, resulting
in a graph of 11K routers. We identify the affiliations of the
routers to determine the network providers that can act as edge
providers. We devise several edge placement strategies and show
that they can improve cloud access latency by up to 30%.

I. INTRODUCTION
Over the past decade, edge computing has emerged as a

compellingly sounding solution for improving and enabling
many next-generation networked applications. The excitement
behind this computing domain majorly stems from its ability
to improve overall latency by processing application services
on devices installed close to the end-user. By doing so, edge
servers naturally enable latency-sensitive applications, such as
virtual reality, augmented reality, live video analytics, robotic
control [1]–[3], etc. The capability to offer cloud-like services
closer to the clients has ushered in a new-age revolution in
industries like communication, medical, automobiles, etc.
While the utility and capability of edge computing to disrupt

the technology market are unquestioned, the placement and
availability of edge servers over the network is still an open
problem plaguing the edge community. There are multiple pos-
sibilities for placements. Early advocates envisioned a world
of user-controlled mobile devices that opportunistically form
processing pools for short-lived applications [4], [5]. Industrial
standardization initiatives, e.g., multi-access edge computing
(MEC), suggest edge infrastructure to be a component of the
ISPs [6]. Also, cloud providers are extending their existing net-
works by deploying compute servers at their point-of-presence.
Content Delivery Network (CDN) providers have widespread
storage servers that can also host edge computations [7], [8].
While simultaneous efforts from multiple interested parties

may help popularize the capabilities of edge computing, we

argue that together these deployments will not be able to fully
harness the capabilities of the edge. One reason is probably
that their launch strategies are often driven by competition for
market dominance that may hinder interoperability in using
edge servers. Despite the growing popularity of the edge
within the research community, relatively little attention has
been paid to understand the distribution of network latency
between routers from a user device to public cloud providers. It
is commonly believed that many latency-sensitive applications
at clouds would benefit from running at edge servers close to
the consumer instead [9].
In this paper, we focus on shared edge computing infrastruc-

tures, similar to the ones already employed by cloud providers.
Hence, we explore the potential of reducing the latency of
public cloud services by hypothetically placing edge servers
at various routers along the path between users and different
cloud providers. To this purpose, we conduct large-scale In-
ternet traceroute measurements leveraging the RIPE Atlas
platform [10] within the US, where we target 30 datacenters
operated by seven major cloud providers. In addition to the
usual user-to-cloud “vertical” traces, we run traceroute
between all vantage points to get a broader knowledge of the
user-serving network. This will give us additional “horizontal”
paths that will complement the “vertical” ones. The collected
dataset is publicly available at [11].
We evaluate various edge placement strategies and our

results reveal that edge computing could bring a latency
improvement between 6% to 30% with respect to the actual
cloud access latency. More interestingly, we find that many
“horizontal” paths we discovered can, in fact, deliver better
cloud latency compared to the regular routing path, yielding
latency gains of up to 40%. Our contributions are as follows:
1) We provide a large-scale latency study using the RIPE
Atlas platform and traceroute from 900+ vantage
points to seven major cloud providers – totaling 30
datacenters in the US.

2) We attribute the owners of each router. This gives an
insight into potential providers of edge services, i.e., the
ISPs and cloud providers that have the pervasiveness and
router scale for an Internet-scale launch.

3) We evaluate several different edge placement strategies
and find that they can reduce cloud access latency by up
to 30% in some cases. However, the absolute values ofISBN 978-3-903176-39-3© 2021 IFIP



the reductions remain on the order of few milliseconds.

II. RELATED WORK

Cloud access latency has been an active research area
for a long time, with [12] as one of the comprehensive
studies, including OS latency and communication bandwidth.
Recently, we conducted global studies on cloud reachability,
with emphasis on access latency [13], [14]. In this work, we
augment the aforementioned works with edge placement to
reduce communication latency to computing resources. This
is related to the large corpora of cache and CDN placement
research. The foundational work by Krishnan et al. [15]
characterizes the placement problem to be intractable in the
general case, although giving algorithmic solutions for several
restricted variants. Qiu et al. [16] investigate the issue in
the context of CDNs and suggest a number of algorithms,
which are essentially approximations of either facility location
or K means problems, which are both NP-hard. In [17],
the performance of CDN is enhanced by tightening cooper-
ation with ISPs. Benkacem et al. [18] develop a theoretical
framework for VNFs placement, which balances between two
optimization targets, namely, cost and QoE. Concentrating
on IoT needs, [19] utilizes information-centric networking,
therefore differing significantly from our setting. Liu et al. [20]
devise both centralized and decentralized placement algo-
rithms to operate in fog radio access networks, finding their
performance to be approximately equal. The methodology
to harness network topology data for better CDN replica
placement was introduced in [21]. Compared to our work,
optimizing for communication latency to computing resources,
cache placement strategies balance latency related to cache hits
(equivalent to our scenario), and cache misses, which involve
a significant latency to the data source.
Also, the edge research community has become active in

placement issues. Wang et al. [22] develop a combinatorial
optimization algorithm focusing on service entity placement
for VR applications. For MEC environments, Xu et al. [23]
offer an algorithm based on Lyapunov optimization and Gibbs
sampling. Gao et al. [24] optimize placement in MEC envi-
ronments further by taking into account network performance.
Once again, such works’ objectives are distant from ours as
they tackle the placement of software services on hardware that
is already deployed and available. However, this paper’s goal is
to explore the possible outline of in-network edge computing
deployment and assess the latency gains that computational
facilities could bring to end-users when compared to the
already deployed cloud infrastructure.

III. MEASUREMENT METHODOLOGY

The focus of our work is to provide a better understanding of
user to cloud connectivity from the network edge. We consider
the network edge to begin with the last set of routers with
public IP addresses located after the probes, thus excluding
LAN devices. As we consider edge deployment in shared net-
work infrastructure, this best corresponds to that point of view.
While there are several datasets publicly available that attempt

to map the Internet connectivity and routing at large [25],
[26], we found them limiting for our study for several reasons.
Firstly, existing projects primarily focus on mapping the entire
IP address space rather than targeted measurements towards
cloud end-points, which includes routes within datacenters.
Secondly, the number and deployment location of probes used
in these projects do not represent the user connectivity at the
network edge. For example, CAIDA Ark project only hosts 52
probes in the US, the majority of which are hosted by network
providers and educational institutes.
In this work, we fill this research gap by launching

large-scale traceroute measurements towards datacenters
of seven prominent cloud providers from RIPE Atlas plat-
form [10]. traceroute provides information about the path
between probes and datacenters, as well as the per-hop latency
along the path. We process the collected data to build hop-
centric and latency-centric network graphs describing user1 to
cloud connectivity. While our methodology can be applied to
any network, we focus our study towards the US as it has
the largest density of cloud datacenters and is an active area
when it comes to deploying new network protocols and edge
infrastructures [27]. Also, RIPE Atlas has a large number of
probes in the US, enabling us to get a very dense network for
our measurements.

A. Data collection

Vantage Points. We select vantage points for our measure-
ments from RIPE Atlas [10], a de-facto standard, and well-
established platform in the Internet measurements community.
RIPE Atlas is a globally distributed Internet measurements

platform that is used extensively for reachability, connectivity,
and performance studies. The platform provides thousands of
small hardware probes connected to the Internet in a variety
of installation environments, ranging from home networks to
managed network core. Users can perform active network
measurements, e.g., traceroute, from probes to end-points
of their choice.
Despite Atlas’s dense deployment nature, a large majority

of the probes are hosted by cloud operators (CO) and network
operators (NO), which allows them to monitor their network
reachability from outside [28]. These probes do not reflect the
connectivity from the network edge and have the potential to
add bias to our measurements. Therefore, we filter out all the
probes that are clearly installed in privileged locations, e.g.,
datacenters, from their user-defined tags [29] datacentre,
us-east*, us-west*, gcp and aws. As these tags are
user-contributed, they may be incorrect; we have attempted to
verify some of them manually and they seem largely accurate,
so we do not see this as a major concern. After filtration, we
selected 934 probes scattered across 209 different networks
(ASes) for our measurements. As we focus on the US, all the
probes that ended up being selected were also from the US.
A further point to note is that RIPE Atlas probes are in the

fixed network. While some probes may have wireless links in

1Despite statistical and operational differences, we use the terms ”probes”
and ”users” interchangeably in this paper.



(a) Probe-to-Cloud (b) Probe-to-Probe

Fig. 1: Example of different network topologies discovered
through our measurements to the cloud and through the probes.

their connectivity, the bulk of them are fully wired. For our
study this is not an issue, since edge servers would most likely
be placed in the fixed network and not on mobile nodes. In an
actual deployment with wireless last-mile clients, the overall
latency reduction would have the same absolute value that we
observe, but the relative improvement would depend on the
performance of the wireless link.
End-Points. Our traceroute measurements are divided
into two parts – probe-to-cloud and probe-to-probe – one with
the purpose to analyze the paths to the cloud servers, the other
to explore additional possible edge locations close to the users.

1) Probe-to-Cloud: The goal of the Probe-to-Cloud mea-
surement is to discover the network topology that carries traffic
from the network edge (probes) to the cloud. We target 30
datacenters operated by seven2 different cloud providers in the
US, motivated by their popularity and effective coverage in the
country. Specifically, we ran traceroute queries to public
VMs hosted by CloudHarmony [30] in all chosen datacenters.
The topology emerging from measurements from the probes
to a particular datacenter is a tree with the datacenter as
root and the probes as leaves (see Fig. 1a). Consequently, the
measurements to all datacenters result in a set of trees.

2) Probe-to-Probe: While our probe-to-cloud measure-
ments provide a useful network map that converges towards
cloud datacenters, it provides limited information about the
complete network topology. In order to further identify the
network connectivity at the network edge, and to discover
additional in-network routers that are possibly closer to the
end-users, we launch mesh-based traceroute measure-
ments between all probes in our dataset. Given the number of
probes, pairwise measurements result in a large set of paths
and related latency information. This knowledge serves to
identify additional potential nodes to host edge servers and
thereby provide lower access latency for the users. Fig. 1b
illustrates the additional paths discovered by Probe-to-Probe
measurements.
Ownership resolution. We supplement our router-level topol-
ogy by augmenting it with the organizations in-charge of oper-
ating them. This allows us to better understand whether future
edge server deployments are more convenient as a natural
expansion of the cloud, or as capillary installation (as close as
possible to end-users). To achieve this, we query the owners
of the in-network routers we encounter in our traceroute

2Amazon, Microsoft, Google, DigitalOcean, Linode, Vultr and Alibaba.

measurements from a public whois database. We manually
cluster the owners into three organization categories – cloud
operators (CO), network operators and ISPs (NO), and non-
categorized (NC). For instance, in our dataset, CO includes
the operators of our 30 end-points while NO includes major
US network operators such as AT&T, Comcast, etc. Finally,
NC includes all the owners that do not belong to any of the
previous categories, e.g., Internet Exchange Points (IXPs).

B. Network graph generation

In this section, we explain how we sanitize our measure-
ments and generate the network graphs for the hop and latency
analysis. Before doing so, we give a primer about IP aliasing
and how it affects our data collection.
Router-level topology. While traceroute’s limitations are
well-known [31] and commonly accepted, one of them may
unduly impact our study. Specifically, traceroute reports
a sequence of IP addresses that are matched against the
responding router interfaces, and it is common for routers to
have multiple interfaces. Multiple interfaces translate to mul-
tiple IP addresses belonging to the same router. Furthermore,
IP aliasing3 may generate even more IP addresses. In our
study, working on an interface-level topology may lead us to
overestimate the network size and coverage of network owners,
or placing multiple computational units in the same router.
As a consequence, an interface-level topology is not suitable
for our aims. Fortunately, mapping network interfaces-level
to router-level topology is a well-studied topic in networking,
and we use CAIDA’s IP aliasing resolution tool kapar [32].
To quantify the effect of IP aliasing, the size of the router-
level topology is 50% smaller than interface-level topology
(26K to 11K). We now describe how we generate hop- and
latency-centric network graphs from the router-level topology.

1) Hop-centric network graph: Our data cleanup involves
removing all routers which have private IP addresses (e.g.,
home routers) or are unresponsive (show up as ∗). Trimming
the former is necessary since private IP addresses do not rep-
resent generic user-to-cloud connectivity, and their existence
is largely dependent on how probes’ owners configure their
network. It must be noted that we aggregate all network laten-
cies while removing private IP addresses to maintain the end-
to-end latency estimate. Unresponsive nodes show up in our
measurements due to in-network routers that disallow ICMP
packets and, therefore, do not respond to traceroutes.
Since we cannot determine neither ownership nor latency of
such routers, we exclude them from our dataset.
While our cleanup techniques might result in a network

graph with shorter paths, we believe that it represents a
real Internet topology much closely. Moreover, since our
analysis concerns the ownerships of network routers majorly,
the trimmed network graph does not impact our results.
Consequently, we generate three network graphs from our
measurements, (i) probe-to-cloud (discussed in §III-A1), (ii)

3IP aliasing consists in associating more than one IP address to a single
network interface
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Fig. 2: Sanitizing RIPE Atlas traceroutes by removing
nodes that violate monotonically increasing RTTs throughout
the network path.

probe-to-probe (in §III-A2) and (iii) probe-and-cloud which
unifies topologies in both (i) and (ii).

2) Latency-centric network graph: The objective of the
latency-centric graph is to augment the hop-centric network
graph with latency values per-hop. Due to the inconsisten-
cies of latencies from traceroutes, our cleanup phase
for generating a latency-centric graph is much stricter than
the hop-centric graph. Every traceroute includes multiple
measurements (typically three), which includes the RTT and
the IP address of every hop. Since each measurement is
independent of the last, there is a possibility that some routers
earlier in the path yield higher RTT than routers that come
later. This behavior is caused by different forward and reverse
paths taken by ICMP packets for different measurements [33].
Let us consider the scenario illustrated in Fig. 2. The figure
depicts the result of a traceroute issued by the Atlas probe
towards the datacenter. Assume that the request identifies
(through hop-centric graph processing) two routers on the path,
RA and RB . The three RTT measurements recorded for each
router are listed atop each node. Since RTT is the sum of
base communication latency (limited by the speed of light) and
delays due to traffic on the path, each of the three RTT values
can vary significantly from another. We choose the minimum
RTT (MinRTT) value reported for each router as base latency
since our objective is to obtain the latency estimate of each
hop least affected by additional network delays. We mark these
values in bold. Using the MinRTT values, we can calculate
the latency of each network hop by subtracting the MinRTT of
the previous router from the one succeeding it, i.e., the latency
of hop RA ↔ RB is MinRTT (RB) − MinRTT (RA).
However, with non-monotonically increasing per-hop RTTs,
such an approximation could result in negative latencies.
Our cleanup algorithm, shown in Fig. 2, works on the

reverse path, i.e., from datacenter node to the probe. The
first step of the algorithm starts from the destination node
and proceeds backward until the source node. At every step,
the active node (marked with a green arrow) ensures that all
preceding nodes have MinRTT smaller than its own. In Step
1, we check that datacenter’s MinRTT is greater than RB , RA,
and the probe (which is assigned 0 RTT). In the considered
example, RB’s MinRTT is greater than the datacenter, and

therefore RB is removed from the path. In the second step,
the algorithm repeats itself, but from the perspective of RA.
The trade-off for enforcing monotonically increasing RTTs

is the reduced graph size, which does not resemble the hop-
centric graph of the network. While our cleanup may reduce
certain edge server deployment opportunities, it delivers, in
turn, a consistent view of the network RTTs; this is quintessen-
tial for investigating the impact of edge computing on network
latency. Similar to our hop-centric graph, we generate two
latency-centric graphs: (i) probe-to-cloud and (ii) probe-and-
cloud (we do not generate probe-to-probe since those paths
do not culminate at cloud DCs).

IV. MEASUREMENTS ANALYSIS
In this section, we analyze the data collected from our

measurements and investigate (i) the make-up of the un-
derlying user-to-cloud connectivity over the Internet, (ii) the
composition of shortest paths from probes to the nearest cloud,
and (iii) the latency contribution w.r.t. the network ownership.

A. Owners Composition of the Network Graph
As discussed in § III, a typical user transits through several

networks owned by different entities while connecting to a
cloud datacenter. Understanding the entities that exist on such
paths is critical for identifying potential players for edge
server deployment and whether some of these players have
an advantage over the others. We use our hop-centric graph
for this scrutiny since it includes all the routers recorded
throughout our traceroute measurements. The results of
our analysis are shown in Fig. 3.
We find that, out ≈11K routers in probe-and-cloud network

graph (shown in Fig. 3a), 30% belong to cloud operators
(CO), 50% to network operators (NO), and the remaining 20%
are unclassified (NC). From this, we infer that NOs own the
majority of the in-network routers and, therefore, from a prob-
ability perspective, have much more edge server deployment
space than COs. Interestingly, we find that Amazon, Google,
and Microsoft collectively own the majority of the routers
deployed by COs (95%). This is primarily due to the extensive
datacenter deployment of the three operators, supported by
their own private WAN infrastructure [34]–[36].
Fig. 3b shows the network composition of the probe-

to-probe network graph (described in §III-A2). This graph
includes ≈10K nodes – almost 86% of the entire hop-centric
network. Such coverage from probe-to-probe measurements
is somewhat expected since the majority of the path subsets
(especially those operated by NOs) is covered by both mesh
and cloud traceroutes. Surprisingly, even though our mesh
measurements do not target cloud end-points, and we carefully
remove probes located within DCs in our analysis, we find that
≈ 25% of the routers in this graph belong to COs. While these
may be routers leased by COs to NOs for directly peering user
traffic to their private WANs [37], the result requires further
investigation, which we leave for future work.
Fig. 3c shows the network composition of the probe-to-

cloud network graph (described in §III-A1). The graph in-
cludes ≈ 8K IP addresses, of which 44% belong to NOs, 39%
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(c) probe-to-cloud: 6527 routers

Fig. 3: Ownership distribution over all the routers extracted from our traceroute measurements.

to COs, and 17% are unclassified (NC). It can be observed that
the COs have a significantly higher router share in this graph
compared to the probe-and-cloud graph. Thus, we deduce that
many network segments present at the edge is not accessed
when users connect to the cloud.
We now quantify the degree of the pervasiveness of COs in

the whole network. To do this, we must isolate the network
segments operated by COs in each network graph. The size
of the probe-and-cloud graph (Fig. 3a), in terms of vertices,
is denoted by SW and can be decomposed into three main
components. Being the union of the probe-to-probe and probe-
to-cloud graphs, SW = SE + SC − SE∩C , where SE , SC ,
SE∩C are the vertices in the probe-to-probe graph (Fig. 3b),
in the probe-to-cloud graph (Fig.3c), and in the overlapping
vertices from both networks, respectively. Consequently, we
can find SE∩C as SE + SC − SW . By substituting the values
from Fig. 3, SE∩C translates to 4999 routers. Hence, ≈44%
of the whole graph is utilized for connecting towards 30 cloud
DCs in the US. We further isolate the routers installed by COs
at the network edge (Fig. 3b). Adapting the previous formula
to assess the size of CO-only nodes, C, we calculate CE∩C =
CE + CC − CW to be ≈1.5K nodes. Thus, more than 50%
of the CO routers that are used to access the cloud DCs are
also present in the probe-to-probe mesh measurements which
do not even target cloud end-points. Therefore, we infer that
CO-owned routers have already pervaded the network edge
and are utilized to forward traffic that is not even destined to
DCs. This phenomenon is also shown by a recent study about
the flattening of the Internet [38].

Takeaways. The majority of network routers on user-to-cloud
paths in the US belongs to network operators and ISPs
(50%), making them preferred candidates for deploying edge
servers. On the other hand, cloud operators are expanding
their reach by installing routers within ISP networks, which
directly peer traffic into their private WANs.

B. Owners Distribution on the Shortest Path to the Cloud

In this section, we investigate how the shortest path to the
closest of the 30 DCs is partitioned among the three categories
from §III-A. The overall aim is to quantify how much space
is still available for edge servers deployment throughout the
network paths and which of the categories have the most

deployment potential. Before discussing the results, we want to
emphasize that the plots do not refer to the raw traceroute
result, but what is delivered after data processing from III-B
and, therefore, paths will be shorter. Also, as we are interested
in ownership, we ignore unresponsive nodes.
Fig. 4a shows the CDF of the number of hops (routers)

belonging to each of the categories on the way to the shortest
path to the closest DC. That is, if a path consists of 3 hops
belonging to two NOs and one CO, three points will be
mapped on the CDF, respectively NO=2, CO=1, and NC=0.
From the figure, we see how COs are almost always present
with one router. This result is to be expected as the end-point
of every traceroute is indeed a CO. Also, a tiny fraction
of paths have multiple, up to 4 hops, in a cloud network.
Furthermore, roughly 20% of the shortest paths do not flow
through any NO routers. This is because probes are one hop to
the cloud, or due to unresponsive routers, or because the ISP
belongs to the NC category. Moreover, in slightly less than
50% of the paths, there are no NC routers, and this reflects
the accuracy of the classification of NOs. Many of the NC
routers belong to small businesses and public institutions, e.g.,
universities with their own backbone.
Fig. 4b illustrates the hop distribution for the percentage of

path belonging to each category. We see that COs consistently
cover a significant part of the path that ranges from 20% to
50%. In rare cases, when the probe belongs to a CO but is not
placed within the DC, COs covers up to 100% of the path.

Takeaways. Cloud operators already cover a significant part
of the paths to the cloud, and this reduces edge deployment
space for NOs and NCs.

C. Latency Distribution on the Shortest Path to the Cloud

We now investigate how the shortest RTT towards the clos-
est DCs is distributed among the three categories. Conversely
to the previous section where we worked with IP addresses,
we now consider latency on network edges, and this involves
a source and destination IP. That is, we have to consider a
couple of categories rather than individual ones. As a result, we
will identify latency bottlenecks between inter/intra-category.
The end goal is to identify where in the network edge servers
deployment would benefit end-users. Here we use the latency-
centric network graph, see III-B2.



0 1 2 3 4 5 6 7 8 9 10

Hops Distribution

0.00

0.25

0.50

0.75

1.00

C
D
F

CO

NO

NC

(a) Absolute number of hops

0 25 50 75 100

Hops Distribution [%]

0.00

0.25

0.50

0.75

1.00

C
D
F

CO

NO

NC

(b) Relative number of hops

Fig. 4: Ownership of the routers on the shortest path to the
closest cloud DC for each probe.

Fig. 5a depicts the absolute RTT distribution for the pairs
of categories from §III-A. The classification in the legend has
no order, meaning that CO-NO is the same as NO-CO. From
the logarithmic scale on the x-axis, we can see that inter- and
intra-category between NOs and COs is very efficient as it
delivers almost in its totality sub-millisecond RTT. Hence, we
see that the network segments between these two categories
are really efficient. On the other hand, the remaining pair of
combinations are not, and it is there that the bulk of latency
lays. This suggests either congested links or poor links quality.
The percentage weight of these network segments within

the shortest paths to the cloud is shown in Fig. 5b. Network
segments between COs and NOs, as expected, contribute
insignificantly to the overall shortest path latency. In some
rare cases, few probes in the area of the closest DC obtain a
high portion of the overall RTT. However, network segments
between these categories contribute negligibly to the full RTT.
From the CDF, we also notice that the bottleneck of the
RTT is shared among the categories of the remaining network
segments. That is, improvements to that portion of the network
can dramatically reduce cloud access latency.

Takeaways. Network segments between the major network
and cloud operators are very efficient. However, the latency
bottleneck is shared among the remaining links.

V. PLACEMENT STRATEGIES

In this section we present the edge placement strategies
aimed to reduce end-users’ access latency to the nearest com-
pute server, but we first provide common notations. We define
the set of candidate for edge deployment as C = V \{P ∪E},
where P and E are the set of probes and cloud datacenters,
respectively. This leaves us with every in-network router in
the latency-centric network graph, except probes and DCs.
The RTT matrix is R, that is the RTT between every pair
of nodes, and the the RTT between nodes i and j is obtained
with Ri,j . The selection function σ(C,U, n) takes as input the
set of candidates and, after the utility function U is applied
to them, it returns the n candidates with the highest value.
Intuitively, each placement strategy ranks candidates based on
their utility function (e.g., RTT) that determines priority for
edge deployment. That is, high utility nodes are preferred over
those with lower value. Note that σ(·) is applied to every
placement strategies in the evaluation phase. Through our
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Fig. 5: Latency between every pair of routers on the shortest
path to the closest cloud DC.

results, we outline future research directions for maximizing
the utility of edge on the Internet-wide scale.

A. Greedy

The greedy strategy is eventually latency-optimal as it
delivers the best possible latency to all probes. This is achieved
when every probe has an edge facility one hop away. The
utility function for a probe p ∈ P can be expressed as:

U(p) = max

{
1

Rp,η
: η ∈ Np

}
(1)

where Np ∈ C is the set of probe’s neighbors. The rationale
is that probes with highest latency gain are selected first. The
drawbacks of greedy strategy are the high deployment cost and
the inability to deliver a shared edge infrastructure, as users
may be unwilling to grant access to others in the network.

B. Betweenness centrality (BC)

The goal of the BC strategy is to lower the end-users latency
to the closest server without deploying as many servers as
in the greedy strategy. Betweenness centrality (BC) indicates
node centrality in a graph, and it is based on how many times
a particular node is encountered through the shortest paths
(Freeman’s definition) [39]. BC has been employed widely,
e.g., to maximize the reach of users in caching systems [40].
For edge deployment, betweenness centrality identifies aggre-
gation nodes within a network, i.e., nodes mostly located on
the shortest paths of other nodes. For example, nodes near
the core of the network may be ideal locations to place edge
and maximize reachability. The utility function of a candidate
c ∈ C is simply:

U(c) = Bc (2)

where Bc is c’s BC. BC’s complexity varies depending on
implementations; we use Brandes’ fast method that yields
O(V E + V (V + E) log V ) for weighted graphs [41].

C. Betweenness centrality with Depth (BC-D)

We believe that BC would be good to maximize reachability,
however we hypothesize that the most central nodes in the
graph (tree-like), see Fig. 1, are the ones closer to the cloud
datacenters. If this is the case, candidate in-network routers
for edge deployment would be gathered rather close to the
datacenters. As a consequence, these nodes would be placed
faraway from the end-users and will bring them little to no
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Fig. 6: Comparison between BC-D and GREEDY strategies over edge servers deployment. Note different y-axis values.

latency benefit. Our proposed BC-D algorithm solves this
problem by weighting the BC’s value by the RTT to the closest
cloud DC. This way, nodes too close to the cloud, which would
minimally reduce latency, are downgraded. Conversely, nodes
further away from the cloud that may deliver better end-users
latency will be preferred. Thus, we define the utility function
of candidate c ∈ C as:

U(c) = Bc ·Rp,d∗ (3)

where Bc is the BC of c, Rp,d∗ is the RTT between the
candidate node c and the closes cloud datacenter d∗.

VI. SIMULATION RESULTS

We evaluated the three placement strategies from the latency
point of view and how these target the different categories
defined in §III. All the following results were obtained using
the probe-to-cloud and the probe-and-cloud latency-centric
graphs. We removed all probes that can reach the closest
cloud DC in one hop as these do not have any room for edge
deployment. After processing, probe-to-cloud and probe-and-
cloud graph has 799 and 834 probes, respectively.

A. Edge computing latency benefits

We start our analysis by calculating the access RTT for
every probe. Access RTT is calculated on the shortest path
toward the closest computational facility, e.g., DC or a newly
placed edge server. If a probe has no edge server on the path,
the access RTT equals the latency to access the nearest cloud.
Fig. 6a shows the evolution of the average access RTT for

probes while increasing numbers of edge servers deployed in
the graph. First, we see that the average RTT for accessing
the closest cloud DC when no edge server is deployed is
7.8ms. On the other hand, when the number of edge servers
is equivalent to the number of probes, the GREEDY strategy
delivers ≈5.5ms while the BC-D strategy 6.7ms. To put it
differently, the GREEDY and BC-D strategies at peak edge
deployment improves network latency by ≈40% and ≈33%
respectively. More interestingly, we see that the two strategies
perform equivalently when ≈ 750 servers are deployed (≈95%
of probes in the graph). Except for the remaining 25% of
edge deployment, the BC-D strategy yields better performance.
The constantly better performance of BC-D over the standard
betweenness centrality, highlights the unsuitability of pure
betweenness centrality in the context of edge placement.

Fig. 6b shows the average access RTT for all probes, while
an increasing number of edge servers is deployed in combined
probe-to-cloud and probe-to-probe graph. In this graph, the
average cloud access RTT (x-axis = 0) is 4.87ms. At peak
edge deployment, the GREEDY strategy delivers an average
access RTT of ≈4.6ms while the BC-D strategy ≈4.65ms,
e.g., gain of ≈6% and ≈5%, respectively. Again, the two
strategies’ curves intersect, meaning that they are equivalent
when the number of edge servers deployed is ≈750. Similar to
our last result, BC-D delivers better access RTT than GREEDY
until the edge deployment covers 95% of the total probes. Even
for this graph, the standard BC is consistently worse than BC-
D, showing poor performance in edge placement.

We now discuss the characteristics of the three strategies.
We designed the BC-D strategy to decrease RTTs for multiple
probes at the same time, as close as possible to the edge of
the network; moreover, BC-D aimed to improve the efficiency
of standard BC in the context of edge placement problems.
The better performance, when compared to BC and GREEDY,
clearly indicates that the design goals are met. Furthermore, as
BC-D is also designed not to deploy too close to the probes,
e.g., first hop, after a certain amount of deployments, it does
not deliver further significant latency improvements, e.g., the
curve flattens. On the other hand, GREEDY is supposed to
optimize the RTT of one probe at the time, and this is reflected
in the linearity of the curve of the average RTT’s evolution
over edge deployment. Latency-optimality is reached when
edge servers cover all of the probes (on-premise deployment).

It must also be stressed that the efficacy of any deployment
strategy is as good as the information of the network it is
applied to. In this work, we augment our information of
the network available to the user via mesh measurements,
which allows for better deployment decisions. There are two
major differences between the probe-to-cloud (Fig. 6a) and the
probe-and-cloud (Fig. 6b) network graphs. Firstly, the probe-
and-cloud (with edge paths) cloud access latency is ≈40%
smaller than the probe-to-cloud (without edge paths) graph
(value when no edge servers are deployed). This phenomenon
strongly suggests that the paths being used to access the
cloud are not optimal. Among possible causes, we believe the
Border Gateway Protocol (BGP) routing to be the primary
culprit. BGP is the Internet’s default routing protocol, which
decides the traffic forwarding decisions for routers at the
crossings between ASes. The shortcomings of BGP are well-
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Fig. 7: Percentage evolution of the three categories over edge
servers deployment divided by strategy.

documented in the networking community [42]. The fact that
BC-D algorithm, which is based on the shortest path to the
closest cloud DC, delivers better results than default Internet
makes us believe that there exist better routing opportunities
on the Internet than what BGP offers. Currently, cloud traffic
routing decisions are driven by peering agreements between
providers operating at different portions of the Internet [37].
However, this matter requires further investigation left for
future work. To sum up, our measurements suggest that cloud
access latency in the US improves by ≈40% when non-
conventional routes exploiting the network edge are used.

The second difference between the two graphs can be
attributed to the impact of edge deployment on RTT reduction.
The probe-to-cloud graph (without horizontal paths), after
complete edge deployment, delivers an RTT improvement of
2ms – reduction of ≈30% of the initial average RTT. On
the other hand, the probe-and-cloud graph (with horizontal
paths) reduces the initial average RTT by 0.27ms, i.e. ≈6%
improvement. We see two interesting renditions of these
results. Firstly, potential edge deployment benefits probe-to-
cloud graph more than probe-and-cloud. This suggests that the
effectiveness of edge can be shadowed by sub-optimal network
routing, and network operators should pay equal attention
to both server placement strategies and cloud traffic pathing
if they want to maximize the utility of their deployment.
Secondly, from complete edge deployment with the GREEDY
strategy (deployment achieves 1:1 mapping between probe and
edge server), we observe that 85% of the average access RTT
is concentrated in the last-mile link (probe to the first hop).
Fig. 6c and Fig. 6d compare the cloud access latency with the
full edge server deployment of both GREEDY, BC and BC-D
placement strategies. From the figures, we can conclude that
while it is possible to bring down latencies with aggressive
edge deployment, it is non-trivial to accelerate performance
for all users (exhibited by the long tails). Furthermore, Fig 6d
shows that the impact of the edge in access latency reduction
is even less when underlying networks are well-configured
by their operators. However, since routing decisions can be
influenced by performance-oblivious reasons, their end-to-end
optimality cannot be guaranteed in the real-world. In such
settings, effective edge deployment decisions are likely to
bring immediate access latency benefits, which would increase
with improvement in last-mile (wireless) access technologies.

B. Owners of the network edge

We now inspect which of the network owners (considered
in Section IV-A) are most eligible for deploying edge servers
using our placement strategies. Through our investigation, we
provide insights on how edge computing could be brought
to reality, more specifically, by whom. Fig. 7 shows the
progression of the percentage of servers deployed by the
different categories in the probe-and-cloud network graph (we
leave out BC for relevance and space reason).
Fig. 7a presents the outcome for the GREEDY strategy that

deploys servers as close as possible to each probe. Such a
strategy directly impacts the server share of cloud operators
(CO) – only 5%. On the other hand, the majority, ≈70%, of the
deployed servers belong to the network operators (NO) as the
first hop of the probe usually lies within the ISP infrastructure
and provides the probe a point-of-entry to the Internet. The
remaining ≈25% of the deployment is to be attributed to the
non-classified (NC) category that is composed of university
networks and minor NOs.
Fig. 7b shows the division of edge deployment among the

three categories for BC-D. Recall that BC-D aims to lower
the access latency as much as possible by sharing central
nodes. From the figure, we see that the big chunk of these
central nodes in the network still belongs to the NOs (40%)
even though there is a decrease of ≈30% with respect to the
GREEDY strategy. Conversely, COs increase their coverage by
15%, for a total amount of ≈20%. Finally, the non-classified
(NC) nodes own the remaining ≈20% of the edge servers.
From the results, we clearly see that NOs, mainly providing

Internet access, are in a dominant position, especially when
compared to COs, for deploying a wide-scale edge. However,
simply having the ability to place computational facilities
closer to the users may not justify deployment. In fact, the
results from Fig. 6b suggests that deploying edge closer to the
users may not be worthwhile for the latency improvement that
edge could bring.

VII. DISCUSSION
In our study, we asked the question of whether edge com-

puting could reduce cloud access latency for applications, and
if yes, by how much. As a use case, we selected the US since it
has the most extensive cloud data center coverage. Hence, it, in
a way, represents the most difficult case for latency reduction
because the clouds are already very widely spread. Our key
finding is that while edge computing can indeed reduce cloud
access latency, the reduction, in general, is very modest, on
the order of 2ms. While a reduction of a few ms may sound
trivial, some applications, especially augmented reality, may
depend on these, hence becoming viable with edge computing.
Nevertheless, from a latency perspective, edge computing is
far from a silver bullet in this case. Naturally, in regions with
more sparse cloud deployment, the advantages are going to
be more significant, and this merits a more extensive global
study of cloud reachability. In our previous works [13], [14],
we performed extensive global latency measurements to the
cloud and their results indicate that in Europe and Oceania



the latencies are comparable with the US, making it likely that
our results would similarly apply in those regions. They also
show that Asia, Latin America, and Africa have significantly
higher latencies to the cloud, making them more appealing
as deployment regions. However, these regions have only a
small number of RIPE Atlas probes, making it difficult to
obtain a good picture of the network topology. As future study,
focusing on these regions would be of paramount importance.
Interestingly, our probe-to-probe measurements indicated

the existence of shorter paths to the cloud than taken by the
regular routing due to BGP and peering decisions between
serving operators. We leave the investigation of these calls
for further measurements. These also indicate interesting edge
deployment potential, as it might be possible to get useful
latency gains by going “sideways” to a neighboring network
as opposed to going upwards to the cloud. This is something
the network and cloud operators should look at together.

VIII. CONCLUSION

We focused our work on potential communication latency
reductions that edge computing could bring to a country-
wide network. We built such insights by collecting large scale
measurements with the RIPE Atlas platform. We found that
network operators, being majorly present in the network, are
very good candidates for edge computing market domination.
However, cloud providers already significantly pervaded into
ISP networks, leaving poor space for deployment to network
operators. Moreover, we conducted a thorough analysis aimed
at identifying bottlenecks in the network, and we showed that
cloud providers and network operators links exhibits good
performance. Finally, we evaluated three placement strategies
and estimated latency gains that hypothetical edge computing
deployment could bring. Our finding suggests that either
placing in-network servers or empowering network infras-
tructure, e.g., with peering agreements, could sensibly reduce
network latency and enable a new class of latency-sensitive
applications.

ACKNOWLEDGMENT

A special thanks to Suzan Bayhan that helped shaping the
BC-D placement strategy in its early stage. This work is
funded by SSF Future Factories in the Cloud (GMT-14-0032),
Celtic project Piccolo (C2019/2-2), and Academy of Finland
AIDA (317086) project.

REFERENCES

[1] Y. Chen et al., “An industrial robot system based on edge computing:
An early experience,” in USENIX HotEdge 18.

[2] M. S. Elbamby et al., “Toward low-latency and ultra-reliable virtual
reality,” IEEE Network, vol. 32, no. 2, pp. 78–84, 2018.

[3] G. Ananthanarayanan et al., “Real-time video analytics: The killer app
for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[4] K. Ha et al., “Just-in-time provisioning for cyber foraging,” in ACM
MobiSys 2013.

[5] W. Shi et al., “Edge computing: Vision and challenges,” IEEE internet
of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[6] T. Taleb et al., “On multi-access edge computing: A survey of the
emerging 5g network edge cloud architecture and orchestration,” IEEE
Communications Surveys & Tutorials, 2017.

[7] M. Satyanarayanan et al., “The case for vm-based cloudlets in mobile
computing,” IEEE pervasive Computing, no. 4, pp. 14–23, 2009.

[8] Amazon, “CloudFront,” https://aws.amazon.com/cloudfront/, 2020.
[9] M. Satyanarayanan, “The emergence of edge computing,” Computer,

vol. 50, no. 1, pp. 30–39, 2017.
[10] RIPE NCC., “RIPE Atlas,” ”https://atlas.ripe.net/”, 2020.
[11] L. Corneo et al., “(how much) can edge computing change

network latency?” 2021. [Online]. Available: https://mediatum.ub.tum.
de/1609139

[12] A. Li et al., “Cloudcmp: Comparing public cloud providers,” in ACM
IMC 2010.

[13] N. Mohan et al., “Pruning edge research with latency shears,” in ACM
HotNets 2020.

[14] L. Corneo et al., “Surrounded by the Clouds,” in The Web Conference
2021, ser. WWW ’21, 2021.

[15] P. Krishnan et al., “The cache location problem,” IEEE/ACM transac-
tions on networking, vol. 8, no. 5, pp. 568–582, 2000.

[16] L. Qiu et al., “On the placement of web server replicas,” in IEEE
INFOCOM 2001.

[17] B. Frank et al., “Pushing cdn-isp collaboration to the limit,” ACM
SIGCOMM CCR, vol. 43, no. 3, pp. 34–44, 2013.

[18] I. Benkacem et al., “Optimal vnfs placement in cdn slicing over multi-
cloud environment,” IEEE Journal on Selected Areas in Communica-
tions, vol. 36, no. 3, pp. 616–627, 2018.

[19] H. Wei et al., “A new cache placement strategy for wireless internet of
things,” Journal of Internet Technology, vol. 20, no. 3, 2019.

[20] J. Liu et al., “Cache placement in fog-rans: From centralized to dis-
tributed algorithms,” IEEE Transactions on Wireless Communications,
vol. 16, no. 11, pp. 7039–7051, 2017.

[21] P. Radoslavov et al., “Topology-informed internet replica placement,”
Computer Communications, vol. 25, no. 4, pp. 384–392, 2002.

[22] L. Wang et al., “Service entity placement for social virtual reality
applications in edge computing,” in IEEE INFOCOM 2018.

[23] J. Xu et al., “Joint service caching and task offloading for mobile edge
computing in dense networks,” in IEEE INFOCOM 2018.

[24] B. Gao et al., “Winning at the starting line: Joint network selection and
service placement for mobile edge computing,” in INFOCOM 2019.

[25] CAIDA, “CAIDA Archipalego (Ark) project,” ”https://www.caida.org/
projects/ark/”, 2020.

[26] H. V. Madhyastha et al., “iplane: An information plane for distributed
services,” in USENIX OSDI 2006.

[27] A. Davis et al., “Edgecomputing: Extending enterprise applications to
the edge of the internet,” in ACM WWW 2004.

[28] V. Bajpai et al., “Lessons learned from using the ripe atlas platform for
measurement research,” ACM SIGCOMM CCR, vol. 45, no. 3, 2015.

[29] RIPE NCC., “Probe tags,” ”https://atlas.ripe.net/docs/probe-tags/”, 2020.
[30] CloudHarmony, “Transparency for the cloud,” ”https://cloudharmony.

com/”, 2020.
[31] H. V. Madhyastha et al., “A structural approach to latency prediction,”

in ACM IMC 2006.
[32] K. Keys, “Internet-scale ip alias resolution techniques,” ACM SIGCOMM

CCR, vol. 40, no. 1, 2010.
[33] E. Katz-Bassett et al., “Reverse traceroute.” in NSDI, 2010.
[34] A. W. Services, “AWS Global Infrastructure Map,” ”https://aws.amazon.

com/about-aws/global-infrastructure/”.
[35] Google, “Google Cloud,” https://cloud.google.com, 2019.
[36] Microsoft, “Microsoft Azure,” https://azure.microsoft.com/en-us/global-

infrastructure/locations/, 2019.
[37] Google, “Google Direct Peering,” ”https://cloud.google.com/network-

connectivity/docs/direct-peering”, 2020.
[38] T. Arnold et al., “Cloud provider connectivity in the flat internet,” in

ACM IMC 2020, 2020, p. 230–246.
[39] L. C. Freeman, “A set of measures of centrality based on betweenness,”

Sociometry, vol. 40, no. 1, pp. 35–41, 1977. [Online]. Available:
http://www.jstor.org/stable/3033543

[40] L. Wang et al., “Pro-diluvian: Understanding scoped-flooding for content
discovery in information-centric networking,” in ACM ICN 2015.

[41] U. Brandes, “A faster algorithm for betweenness centrality,” The
Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.
[Online]. Available: https://doi.org/10.1080/0022250X.2001.9990249

[42] T. Arnold et al., “Beating BGP is Harder than we Thought,” in ACM
HotNets 2019.





Paper VI





Analyzing Public Cloud Connectivity at its Best

Lorenzo Corneo∗

Uppsala University
Sweden

Aleksandr Zavodovski∗

Uppsala University
Sweden

Andreas Johnsson
Uppsala University
Ericsson Research

Sweden

Christian Rohner
Uppsala University

Sweden

Per Gunningberg
Uppsala University

Sweden

ABSTRACT

Cloud computing has a remarkable growth not only in terms
of its capacity and performance but also in its geographi-
cal coverage and density, coming closer to the users. With
shorter network distances to users, it is gradually overcom-
ing its initial drawback – the high latency of access. Thus,
we are interested in quantifying the network RTT in well-
connected and largely populated metropolitan areas from
regular user points on the Internet. Besides RTT, we also
measure its variation since it is also of paramount importance
to many time-critical applications, e.g., augmented reality. In
addition, we identify bottleneck links in the network paths
that are responsible for RTT anomalies (e.g., by packet queu-
ing) and hence poor performance. Our study covers over
40 metropolitan areas around the world and more than 100
centers offering public clouds. The Atlas RIPE platform is
used for the measurements. The collected measurements
exhibit median RTT to the nearest cloud of 6.49ms with a
standard deviation, for 50% of the samples, below 1.23ms.
We also find that cloud ingress is often responsible for the
deterioration of performance.

1 INTRODUCTION

Cloud computing [1] continues to attract new businesses
and customers, extending the quality and diversity of its
service offerings [2, 3]. In the last decade, there has been a re-
markable growth in the number of public cloud datacenters,
both in increased geographical coverage as well as increased
density in highly populated areas, where the number of cus-
tomers can be maximized, which is far from finished. For
example, Amazon has already planned an expansion of 15
new centers zone in 5 new regions [4], Microsoft Azure is
planning to expand to 15 new regions [5]. Carried by such
steady growth, cloud services became physically located
closer and closer to the end-users. At the same time, network
connectivity and performance have also improved [6]. This
dilutes the cloud computing initial birth defect, namely, the
high network access latency [7, 8].

∗Both authors contributed equally to the paper

Cloud datacenters have become so pervasive that the re-
search community has started to question the role of latency
reduction as a driver of edge computing [9]. This work in-
tends to partly answer this question by systematically mea-
sure latencies to publicly available clouds in selected metro-
politan areas from a large set of widespread vantage points.
The measurements are focused on areas that have a pop-

ulation size bigger than 1 million, and have at least one
datacenter in close proximity. According to United Nations
Population Division [10], over half of the global population
now lives in cities. Especially high is the percentage of the
urban population in Northern America (83.6%), Southern
America (81.2%), and Europe (74.9%).
In fact, it is nowadays common to experience round-trip

times (RTT) in the range of 20ms to 40ms in almost half
of the world’s metropolitan areas, and even below 10ms in
the US, Europe, and Asia with an abundant cloud provision-
ing [11].
In this work, we analyze RTT, RTT variation and identify

poorly performing links that add a non-proportional large
amount of variation. We conduct network measurements
spanning at least 24 hours for each of the 40+ metropolitan
areas under investigation. The targets of the measurements
are public cloud services belonging to more than 100 data-
centers, deployed in 27 countries around the world. In total,
we collected more than 1.8 million measurement data points.
The dataset will be publicly available. The RIPE Atlas plat-
form [12] is used for all measurements.
The collected latency results are encouraging – the met-

ropolitan areas under investigation deliver on the average
very low latency. The median RTT for our entire dataset is
6.49ms with a standard deviation, for 50% of the paths, of
1.23ms. The Median Absolute Deviation (MAD) for the en-
tire dataset is 6.85ms (§ 3). The majority of the probes exhibit
stable latency during the observed measurement period. This
means that cloud datacenters in metropolitan areas are able
to deliver RTTs below the motion-to-photon [13] (≤ 20ms)
to nearby and well-connected users in the area. Still, many
real-time applications are sensitive to latency variations, e.g.,

1



To be submitted, 2021 Lorenzo Corneo, Aleksandr Zavodovski, Andreas Johnsson, Christian Rohner, and Per Gunningberg

virtual reality, and some probes experience degraded perfor-
mance due to long tails in their RTT distributions.
We further explore the network paths of the problematic

probes in order to identify the source links for the large
variations in RTT. The variation is likely to be located at
congested links. The result from our exploration indicates
that the problems appear predominantly on the cloud ingress
link, ∼ 65% of the time, even in the case of direct peering
with Internet Service Providers (ISP).
To our best knowledge, this work is the first of a kind

to evaluate cloud connectivity in favorable conditions at a
large scale, concentrating on metropolitan areas. The main
contributions of the paper are: (1) a pervasive quantification
of RTT to 114 cloud datacenters located in 27 countries and
51 metropolitan areas, and (2) the detection and classification
of the network links causing high RTT variations.

2 METHODOLOGY

In this section, we describe our measurement setup, tools,
dataset, analysis methodology and discuss the limitations of
our traceroute approach.

2.1 Areas of measurements

We select metropolitan areas with a population size over
1M which have at least one public cloud datacenter in the
vicinity (≤ 50 km from the city center). Thus, we measured
17 cities in Asia, two cities in Africa, 15 cities in Europe, 13
cities in North America, one city in South America, and three
cities in Oceania. A listing of the targeted metropolitan areas
can be seen in Figure 2.

2.2 Cloud End-Points

In each of the selected areas, we include all nearby datacen-
ters, totaling 114 of them. We limit our choice to 10 cloud
providers – Amazon, Google, Microsoft, IBM, Alibaba, Or-
acle, DigitalOcean, Linode, UpCloud, and Vultr. We picked
these providers according to their proximity to our measure-
ment areas and how well-established they are. The majority
of the selected datacenters are also reached through Cloud
Harmony[14], which hosts end-points at the clouds intended
for performance evaluation from the outside. The datacen-
ters of Vultr and Linode expose their own end-points for
testing.

2.3 RIPE Vantage Points for active
measurements

We use the well-known and established measurement plat-
form RIPE Atlas [12]. It has a wide geographical coverage,
and it has been used extensively for measuring network
reachability, connectivity, and performance. The platform
provides thousands of small hardware vantage points, called

probes, connected to the Internet in a variety of installation
environments, ranging from home networks to managed
network cores. All probes we use have a wired (Ethernet)
connection to the Internet. Users can instruct Atlas to per-
form active network measurements from selected probes
using built-in tools or user-provided.
Some probes are hosted by cloud providers and network

operators, mainly for monitoring their network reachability
from outside [15] and performance evaluations. Since cloud-
hosted probes are not relevant for quantifying users’ cloud
connectivity, we filtered them out by examining the AS:es
they belong to and by employing user-defined tags [16] of the
probes. From the remaining probes, we selected randomly
up to 20 probes from each of the metropolitan areas. In total,
more than 700 probes were used.

2.4 Experimental Setup

In our measurement campaign we use the built-in
paris-traceroute [17] to measure RTT from a probe to
a cloud end-point. We launch probes with an interval of 4
minutes to each nearby datacenter for a period of at least
24 hours. By using the TCP variant of paris-traceroute,
which uses TCP SYN probing packets instead of ICMP, we
avoid low-prioritization or blocking of ICMP on the reverse
path. We use full-sized MTU packets of 1500 bytes and send
three probe packets per hop. Additionally, we conduct a
special experiment to compare the performance of 1500 vs.
48 bytes packets. All measurements were completed from
April 2021 to May 2021.

2.5 Limitations of traceroute

As noticed in [18], classical traceroute [19] and ping are not
the best possible tools to evaluate RTT and jitter, often result-
ing in an overestimation, especially the jitter. Paris-traceroute
provides better accuracy than classical traceroute since it
maintains the flow-ids to avoid differentiation between load
balancing paths. There are additional limitations of classi-
cal traceroute, such as low prioritization of ICMP Time
exceeded messages on the reverse path [20]. It should also
be noted that when an ICMP Time Exceeded packet is sent
back, only 8 bytes of the original payload are appended to
the ICMP packet. Thus, this may induce asymmetry with
only the uplink affected by increased packet size. For high
bandwidth networks it becomes less of an issue. Also, the
family of traceroutes can not detect Layer 2 artifacts, e.g.,
MPLS tunnels [21], frequently used by cloud networks.

2.6 Detection of problematic links

Some of the network paths exhibit larger RTT variations to
a cloud than other probes to the same cloud end-point. We

2



Analyzing Public Cloud Connectivity at its Best To be submitted, 2021

here present how we localize the links responsible for the
variations.
It is challenging to pinpoint variation anomalies using

traceroute traces. One obstacle is the asymmetry of for-
ward and reverse paths, and that traceroute exposes only
the forward path. A problematic link can very well be on the
reverse path and hence hidden. Also, reverse paths might
differ among traceroute hops, which sometimes leads to a
seemingly illogical situation when RTT of one hop in the
middle of the path is higher than RTT of the destination. The
reverse-traceroute [22] tool could potentially infer re-
verse paths, but its usage would require data from additional
vantage points. Therefore, we identify the links responsible
for high RTT variation by employing the following heuristics
based on the methodology presented in [23, 24]. We consider
for anomaly analysis every hop 𝑖 for each the following con-
dition applies Δ𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(Δ𝑖 ) > (1.4826 ∗ 𝑀𝐴𝐷), where
Δ𝑖 = 𝑅𝑇𝑇𝑖+1 −𝑅𝑇𝑇𝑖 and MAD is a median absolute deviation
of all Δ𝑖 . Similarly to [23], we first check that RTT increase
per hop is consistent along the path and set the threshold of
3ms that an outlier must exceed compared to the median to
be included in the analysis ([23] uses 10ms, but we analyze
lower RTTs).
For the problematic links, we look up their autonomous

system (AS) number or check if it belongs to a cloud provider’s
network [25, 26]. We also retrieve the AS for the preceding
link (router), so we know both ends of the problematic link.
Then we categorize the link as intra-AS if both parts of the
link belong to the same AS and as inter-AS otherwise. If they
both belong to the targeted cloud, it is classified as intra-
cloud. If it is the last hop, it is classified as cloud ingress. We
also define the special case of cloud ingress – direct cloud

ingress for those cases when the probe enters the cloud di-
rectly from its AS. Lastly, if it is the first hop, it is classified
as last mile.
We exclude from the analysis traces containing stars, i.e.,

cases where some routers in the middle of the path did not
reply to the traceroute probes.

3 RESULTS

In this section, we discuss the main finding of our measure-
ments, providing a comprehensive analysis of RTT, its varia-
tion, and problematic links on the paths.

3.1 RTT Overview

We now look at all the RTT samples that we collected during
our experiments. The full details of the RTT measurements
are available in Appendix A, and in Fig. 1, we present an
excerpt from it – the New York metropolitan area. There are
29K samples of 16 RIPE Atlas probes accessing DigitalOcean,
Linode, and Vultr datacenters. Each line in Fig. 1 represents

Figure 1: RTT measurements of the New York metro-
politan area, each line represents individual RIPEAtlas
probe (long tails cut, excerpt from Appendix A).

RTT distribution of an individual probe. What makes this
case rather typical (see Appendix A) is that there are 14 well-
connected probes having RTT below 10ms and a couple of
highly variant outlier probes suffering from the connectivity
issues. As the mean RTT value of “good” probes is 4.3ms
(percentiles: 25th – 1.87ms, 50th – 2.7ms, 75th – 6.36ms, and
95th – 11.24ms), is it clear that in the New York area, it is
possible to achieve RTTs below the motion-to-photon [13]
threshold of 20ms. This result is promising since it suggests
that cloud datacenters deployed in metropolitan areas may
run applications with stringent latency requirements, e.g.,
augmented reality. Although the distributions in Fig. 1 have
long tails, the well-connected probes have only five outliers
with RTTs around 100ms and a single one over 1000ms,
which happened on cloud ingress.
Fig. 2 summarizes the results for all metropolitan area

measurements. Generally, our considerations concerning the
New York area apply also for most of the cities, where a
few misbehaving probes increase the RTT variation. Despite
that, the percentiles of RTTs for the entire dataset are as fol-
lows: 25th – 2.99ms, 50th – 6.63ms, 75th – 15.93ms, and 95th

– 36.6ms. The high variance in RTT is observed in the city of
Las Vegas because only three probes participated in measure-
ments, of which one was highly unstable (see Appendix A).
The notable exception is Salt Lake City, where RTTs fluctuate
from 25ms to 60ms, with no single “good” probe. As our
investigation shows, the remarkable slowdowns happen on
cloud network ingress, inside local ISPs, and also on their
boundaries. Moreover, some of the IPs inside the cloud net-
work appear to be of Google’s Canadian datacenters. Clearly,
weaknesses or sub-optimal configuration of the networking
infrastructure can eliminate the benefits of having a nearby
datacenter. It is also likely that access is optimized for dedi-
cated customers, not for the general public residing in the
area. However, the case is not typical and maybe also due to
the recent establishment of the datacenter [27].
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Figure 2: Summary of RTT distributions for individual cities and areas; see Appendix A for complete results.

Figure 3: Clustering of probe-to-datacenter connections with respect to RTT and its SD grouped by continents.

0 10 20 30 40 50

[ms]

0.00

0.25

0.50

0.75

1.00

C
D

F MaxRTT - MinRTT
MaxRTT - MeanRTT
RTT
SD-RTT

Figure 4: Comparison of RTT and RTT variation distri-
butions expressed in terms of standard deviation (SD),
difference between the maximum and minimum RTT,
and difference between maximum RTT and mean RTT
for every traceroute.

3.2 RTT Variation Overview

In this section, we further investigate the variation of RTT
that we witnessed in our measurements. Fig. 3 shows a
heatmap representing the RTT for a given path, matched
against its standard deviation (SD) grouped by continents.
In all cases, except for Australia, we distinguish clearly one
cluster, which is especially distinctive and delimited by the
yellow surface in the case of Asia. This cluster indicates that

a significant fraction of the measured probe-to-datacenter
connections has RTT value of ∼ 5ms and a SD of RTT lower
than 2ms. The percentiles of SD for the entire dataset are
as follows: 25th – 0.35ms, 50th – 1.23ms, 75th – 5.69ms, and
95th – 53.57ms, and median absolute deviation is 6.85ms.
We now analyze RTT variation from other perspectives,

in addition to the SD. Fig. 4 show the cumulative distribution
of different ways of representing RTT variation and also
reports how these compare to the distribution of (all) RTTs,
shown in dashed-dotted green, and its relative SD, shown in
dotted red. From the figure, we see that 80% of the SD values
are between ∼0ms and 10ms, and ∼ 50% is below 2ms. Then,
we propose two other ways to interpret RTT variation. The
first is the range of the RTTs returned from the final hop of
each traceroute, which can be calculated as the difference
between the maximum RTT and the minimum RTT; this is
shown as the dashed black curve in the figure. The second
is the distance between the maximum RTT and the mean
RTT of the final hop returned by each traceroute; this is
indicated by the yellow line in the figure. The distributions of
these two sets of values (black and yellow lines) are very sim-
ilar, and the distance between them is barely distinguishable.
This means that the span of the RTT values in metropolitan
areas is very limited, exhibiting very low RTT variation; this
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(b) Detected outliers’ increase RTT distributions

(c) Anomalies by their type. Y-axis displays median RTT measured for the hop in “normal” conditions, x-axis – RTT in the case

of anomaly.

Figure 5: Analysis of the detected outliers.

is also remarked by the fact that the 95th percentile of these
distributions is below 10ms.

3.3 Problematic links

Using the methodology described in § 2.6, we analyze the
problematic links, causing what we call outliers, identified
in our network measurements. In Figure 5a, we present the
amount, expressed in percentage, of outliers grouped by the
network location where they occurred. The outliers’ dataset
contains 3985 data points in total. Anomalies happening in-
side ASes (Intra-AS) and between them (Inter-AS) are 16%
and 5%, respectively. In accordance with [28], the last-mile
link (from the probe to the ISP’s network) is one of the main
responsible for causing cloud unreachability. In our case, the
last-mile link is responsible for 5.6% of the detected outliers
(First Hop). Typically, probes with a constantly high variation
of RTT suffer from this problem. Around 36% of RTT out-
liers happen on the cloud ingress (Cloud Ingress), which is a
relatively high number given that cloud providers constantly
seek to optimize their peering agreements for better cus-
tomer service. It is worth mentioning that often the last-mile
(ISP’s network) leads directly to the cloud network [6]. In
the case of direct peering (Direct cloud ingress), the identified
outliers account for 29% of the total outliers. Then, cloud
networks (Intra-cloud) are responsible for 7% of the outliers.
Figure 5b quantifies the magnitude of the outliers’, re-

porting their respective RTTs. Thus, the figure shows the

distributions, grouped by network locations, of the outliers’
RTTs. Here we see that the distribution of outliers in Inter-AS
has a median RTT of 59ms, while outliers within the AS,
Intra-AS, account for a median RTT of 54ms. Additionally,
outliers at the Cloud Ingress, without direct peering, are in
the order of 945ms; here we have one probe, likely with
connectivity issues, that delivers RTTs in the orders of sec-
onds and skews the distribution. Outliers with direct cloud
peering, Direct cloud ingress, have a median RTT of around
160ms. According to this result, direct peering between ISPs
and cloud providers seems to deliver better network per-
formance in case of anomalies. Outliers within the cloud
network, Intra-Cloud, experience increases of median RTT
of 68ms while outliers in the last-mile (First Hop) have a
median RTT of 55ms.
Finally, we show in Figure 5c a more granular representa-

tion of the detected outliers. On the y-axis, we represent the
median RTT that a particular hop usually experiences. Then,
on the x-axis, we report the extent of the RTT identified in
the outlier under investigation. Please notice the non-linear
scale used on both axis to improve visibility. Here it is pos-
sible to see how much an outlier deviates from the median
RTT and, the more the markers deviate from the logarithmic
curve on the right side, the bigger the value of the outlier.
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Figure 6: Comparison of RTT distributions for data-
centers in New York and Denver for different packet
sizes (48 and 1500 bytes).

3.4 Use Case: Packet Size and Distance

In this section, we investigate the impact of different packet
sizes of the traceroute probes sent to the datacenters. We
consider packet sizes of 48 and 1500 bytes, which is the max-
imum MTU size to avoid fragmentation. In this small-scale
experiment, we want to see whether the probes’ packet size
has an impact on the RTT performance when combined with
distance to datacenters. Hence, we showcase the situation
in New York, where the Atlas probes are nearby (10–25 km),
and in Denver, where the Atlas probes are located ∼150 km
away from the datacenters. In New York, the RTT distri-
bution obtained with probes of size 48B is comparable to
the one obtained with probes of size 1500B. From this, we
deduce that the impact of “small” or “big” packets is negli-
gible when the datacenters are close by. The 50𝑡ℎ percentile
is below 10ms, and the 90𝑡ℎ is below 15ms. On the other
hand, the situation in Denver is different. In fact, it is now
possible to see how the RTT performance degrades when
issuing probes with bigger packet size (1500B) and how the
distribution obtained by 48B packets delivers better RTT
performance. The 95𝑡ℎ percentile for 48B packets is 27ms
and for 1500B is 70ms. Thus, we infer that the packet size of
the probes does not particularly impact RTT performance
when the vantage points are very close to the datacenters
(10–25 km), however, when the distance to the datacenters
increases, the size of the packet is accountable for the loss of
performance.

4 RELATEDWORK

In recent years, a number of cloud reachability studies were
presented, demonstrating a great interest in the topic. The
two closest works to ours are by Mohan et al. [9] and Corneo
et al. [11]. These studies reflect how much had changed since
the early days of the cloud when the delay to the cloud varied
from hundreds of milliseconds to seconds [29]. In [9], the
authors question the liability of latency reduction as a driver
for edge computing development, noticing that RTTs to the

cloud has reduced dramatically in the last decade. In [11],
the authors assess the cloud reachability on a global scale,
summarizing by continents, individual countries, and statis-
tical areas, concluding that in half of the world’s countries,
RTT to the cloud stays within 20ms to 40ms range. Com-
pared to the two studies above, our investigation has a much
stronger focus on measurement locations, as we choose large
metropolitan areas where the majority of the population re-
sides, and network connectivity is generally good. Thus, we
highlight the best possible performance that the cloud can
offer in densely populated areas, where most of the demand
for latency-critical applications is concentrated. Agrawal
et al. investigate the unreachability of cloud services that
they found to depend not on the cloud network but on the
last-mile links [28]. We also acknowledge the last-mile con-
nectivity problems, as in every city, there is a minority of
probes experiencing problems related to their local ISP.
The following work is loosely related to the reachability

topic but is still relevant for our research. Arnold et al. as-
sessed the flattening of the Internets by showing that several
cloud providers bypass Tier 1 ISPs [6]. Their methodology
involves issuing ICMP traceroutes from virtual machines
from six different cloud providers to wide IPv4 prefix ranges.
Another work by Arnold et al. [30] evaluates the effects of
private WAN on cloud performance. Palumbo et al. evaluate
the latency performance of globally spread Amazon Web
Services and Microsoft Azure datacenters from 25 vantage
points from PlanetLab [31]. Haq et al. study inter-continental
links between three major cloud providers and find them
to deliver better RTTs and jitter when compared to pub-
lic Internet links [32]. Tomanek et al. evaluate the latency
performance of Microsoft Azure datacenter adopting a mul-
tidimensional approach [33]. Høiland-Jørgensen et al. study
latency variation at Internet scale from existing datasets [34].
Our work is the first of a kind to explicitly evaluate cloud

connectivity in favorable conditions at a large scale, concen-
trating on the areas where most of the existing and potential
clients reside. Furthermore, we focus particularly on latency
variation, which is one of the timing requirements of latency-
sensitive applications reported by the 3GPP [35].

5 CONCLUSION AND FUTUREWORK

In this paper, we evaluated connectivity to the public cloud in
largemetropolitan areas on a global scale.Weweremotivated
to investigate whether the public cloud can support novel
latency-stringent applications in conditions where geograph-
ical distance has a very limited impact on performance. Our
results have revealed the strong performance of the network,
as for the entire dataset, the median RTT is 6.49ms, and for
the half of the probe-to-datacenter connections, standard
deviation of RTT is below 1.23ms. These results indicate

6
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that the network latency in metropolitan areas is abundantly
below the motion-to-photon threshold of 20ms that latency
demanding applications such as augmented reality require.
We also have shown that remarkably often, delays happen
at cloud ingress (∼ 65%) and within the same AS (∼ 16%).
The expansion of cloud providers is continuing actively,

and major companies, e.g., Amazon, Microsoft, etc., are con-
stantly increasing their presence in more and more regions
around the world. The study of cloud connectivity in ur-
ban areas was also important because more than half of the
world’s population lives in cities, and the trend is likely to
progress further.
We leave to future works the extension of our measure-

ments to additional locations, e.g., datacenters in smaller re-
gional cities, and to include in the study also non-global cloud
providers, which are not currently addressed in this work.
Moreover, we plan to complement our current methodology
with techniques for reverse path examination and outliers
detection. We also aim to include in future datasets wireless
vantage points, e.g., Wi-Fi and 5G.
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A ROUND-TRIP TIMES BY LOCATIONS AND CLOUD PROVIDERS

Figure 7: Europe: RTTs of individual probes by city and datacenter. Each line represents an individual probe. Long
tails excluded.

Figure 8: North America: RTTs of individual probes by city and datacenter. Each line represents an individual
probe. Long tails excluded.

8



Analyzing Public Cloud Connectivity at its Best To be submitted, 2021

Figure 9: Asia, RTTs of individual probes by city and datacenter. Each line represents an individual probe. Long
tails excluded.

Figure 10: Australia, South America, and Africa: RTTs of individual probes by city and datacenter. Each line
represents an individual probe. Long tails excluded.
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